【題目】如圖為某大河的一段支流,岸線近似滿足∥寬度為7圓為河中的一個半徑為2的小島,小鎮(zhèn)位于岸線上,且滿足岸線現(xiàn)計劃建造一條自小鎮(zhèn)經(jīng)小島至對岸的通道(圖中粗線部分折線段,在右側(cè)),為保護小島,段設(shè)計成與圓相切,設(shè)
(1)試將通道的長表示成的函數(shù),并指出其定義域.
(2)求通道的最短長.
【答案】(1)(2)
【解析】
(1) 過點作于點,以為原點,建立如圖所示的直角坐標系,先求出,
再求出,即可求出,再求函數(shù)的定義域.(2)利用導(dǎo)數(shù)求函數(shù)的最小值,即得通道ABC的最短長.
(1)過點作于點,
因為與的距離為,
所以,
以為原點,建立如圖所示的直角坐標系,
因為,所以設(shè),
則直線的方程為,即
因為與圓相切,圓的半徑為,
所以,
因為,所以,
即,
所以,
由于,所以,
令,
則因為函數(shù)在上單調(diào)遞減,所以,
即函數(shù)的定義域為.
(2
令,得,則,其中,且.
由,得,
0 | + | ||
極小值 |
所以當(dāng)時,,
即通道的最短長為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】技術(shù)員小張對甲、乙兩項工作投入時間(小時)與做這兩項工作所得報酬(百元)的關(guān)系式為:,若這兩項工作投入的總時間為120小時,且每項工作至少投入20小時.
(1)試建立小張所得總報酬(單位:百元)與對乙項工作投入的時間(單位:小時)的函數(shù)關(guān)系式,并指明函數(shù)定義域;
(2)小張如何計劃使用時間,才能使所得報酬最高?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AOB是一塊半徑為r的扇形空地,.某單位計劃在空地上修建一個矩形的活動場地OCDE及一矩形停車場EFGH,剩余的地方進行綠化.若,設(shè)
(Ⅰ)記活動場地與停車場占地總面積為,求的表達式;
(Ⅱ)當(dāng)為何值時,可使活動場地與停車場占地總面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),x∈[-1,1],函數(shù),a∈R的最小值為h(a).
(1)求h(a)的解析式;
(2)是否存在實數(shù)m,n同時滿足下列兩個條件:①m>n>3;②當(dāng)h(a)的定義域為[n,m]時,值域為[n2,m2]?若存在,求出m,n的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在區(qū)間上的值域.
(1)求的值;
(2)若不等式在上恒成立,求實數(shù)的取值范圍;
(3)若函數(shù)有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項的和為且數(shù)列滿足且對任意正整數(shù)都有成等比數(shù)列.
(1)求數(shù)列的通項公式.
(2)證明數(shù)列為等差數(shù)列.
(3)令問是否存在正整數(shù)使得成等比數(shù)列?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足條件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函數(shù)f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐的底面ABCD為直角梯形,,,,為正三角形.
Ⅰ點M為棱AB上一點,若平面SDM,,求實數(shù)的值;
Ⅱ若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體中,,四邊形為矩形,平面平面,.
(1)求證:平面⊥平面;
(2)點在線段上運動,設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com