如圖,四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,∠PDA=45°,點(diǎn)E為棱AB的中點(diǎn),求證:平面PCE⊥平面PCD.
考點(diǎn):平面與平面垂直的判定
專題:證明題,空間位置關(guān)系與距離
分析:根據(jù)面面垂直的判定定理即可證明平面PCE⊥平面PCD.
解答: 證明:∵PA⊥底面ABCD
∴PA⊥AD,PA⊥CD,
又AD⊥CD,PA∩AD=A
∴CD⊥平面ADP,
∵AF?平面ADP,∴CD⊥AF.
直角三角形PAD中,∠PDA=45°
∴△PAD為等腰直角三角形,
∴PA=AD.
∵F是PD的中點(diǎn),
∴AF⊥PD,
又CD∩PD=D.
∴AF⊥平面PCD.
∵AF∥EG,∴EG⊥平面PCD,
又EG?平面PCE,
∴平面PCE⊥平面PCD.
點(diǎn)評(píng):本題主要考查面面垂直的判定,要求熟練掌握相應(yīng)的判定定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx-
π
6
)+1,(A>0,ω>0)的最大值為3,其圖象的兩條相鄰的對(duì)稱軸之間的距離為
π
2

(1)求f(x)的解析式
(2)設(shè)|α|<
π
2
,f(
α
2
)=-1,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差d不等于0
(1)若數(shù)列{an}中的不同三項(xiàng)ar,as,at為等比數(shù)列,且r,s,t也為等比數(shù)列,證明:a1=d;
(2)若(a12+(a112=10,求a11+…+a21的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從5名男生和3名女生中任選3人參加奧運(yùn)會(huì)火炬接力活動(dòng),若隨機(jī)變量ξ表示所選3人中女生的個(gè)數(shù),求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面α、β滿足α⊥β,α∩β=L,直線AB在平面α內(nèi),AB⊥L,直線BC、DE在平面β內(nèi),且BC⊥DE,求證:AC⊥DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax,(x≥0)
(1-2a)x-4a+4,(x<0)
,其中a>0且a≠1.
(1)若f(f(-2))=
1
9
,求a的值;
(2)若f(x)在R上單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐P-ABC中,PA⊥平面ABC,∠ACB=90°,BC=1,AC=
2
.如圖,從由任何二個(gè)頂點(diǎn)確定的向量中任取兩個(gè)向量,記變量X為所取兩個(gè)向量的數(shù)量積的絕對(duì)值.
(1)當(dāng)PA=2時(shí),求P(X=4)的值.
(2)當(dāng)PA=1時(shí),求變量X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩個(gè)圍棋隊(duì)各派出三名選手A、B、C和a、b、c并按A、B、C和a、b、c的出場順序進(jìn)行擂臺(tái)賽(擂臺(tái)賽規(guī)則是:敗者被打下擂臺(tái),勝者留在臺(tái)上與對(duì)方下一位進(jìn)行比賽,直到一方選手全部被打下擂臺(tái)比賽結(jié)束),已知A勝a的概率為
3
5
,而B、C和a、b、c五名選手的實(shí)力相當(dāng),假設(shè)各盤比賽結(jié)果相互獨(dú)立.
(Ⅰ)求到比賽結(jié)束時(shí)共比賽三盤的概率;
(Ⅱ)求到比賽結(jié)束時(shí)選手A勝二盤的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=
1
2
x與雙曲線
x2
9
-
y2
4
=1交于A、B兩點(diǎn),P為雙曲線上不同于A、B的點(diǎn),當(dāng)直線PA、PB的斜率kPA,kPB存在時(shí),kPA•kPB=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案