【題目】某數(shù)學(xué)教師對(duì)所任教的兩個(gè)班級(jí)各抽取20名學(xué)生進(jìn)行測(cè)試,分?jǐn)?shù)分布如表,若成績(jī)120分以上(含120分)為優(yōu)秀.

分?jǐn)?shù)區(qū)間

甲班頻率

乙班頻率

[0,30)

0.1

0.2

[30,60)

0.2

0.2

[60,90)

0.3

0.3

[90,120)

0.2

0.2

[120,150]

0.2

0.1

優(yōu)秀

不優(yōu)秀

總計(jì)

甲班

乙班

總計(jì)

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

(Ⅰ)求從乙班參加測(cè)試的90分以上(含90分)的同學(xué)中,隨機(jī)任取2名同學(xué),恰有1人為優(yōu)秀的概率;
(Ⅱ)根據(jù)以上數(shù)據(jù)完成上面的2×2列聯(lián)表:在犯錯(cuò)概率小于0.1的前提下,你是否有足夠的把握認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)是否優(yōu)秀與班級(jí)有關(guān)?

【答案】解:(Ⅰ)乙班參加測(cè)試的90分以上的同學(xué)有6人,記為A、B、C、D、E、F.

成績(jī)優(yōu)秀的記為A、B.

從這六名學(xué)生隨機(jī)抽取兩名的基本事件有:

{A,B},{A,C},{A,D},{A,E},{A,F(xiàn)},

{B,C},{B,D},{B,E},{B,F(xiàn)},{C,D},

{C,E},{C,F(xiàn)},{D,E},{D,F(xiàn)},{E,F(xiàn)}共15個(gè),

設(shè)事件G表示恰有一位學(xué)生成績(jī)優(yōu)秀,符合要求的事件有:

{A,C},{A,D},{A,E},{A,F(xiàn)},

{B,C},{B,D},{B,E},{B,F(xiàn)}共8個(gè),

;

(Ⅱ)

優(yōu)秀

不優(yōu)秀

總計(jì)

甲班

4

16

20

乙班

2

18

20

總計(jì)

6

34

40

在犯錯(cuò)概率小于0.1的前提下,沒(méi)有足夠的把握說(shuō)明學(xué)生的數(shù)學(xué)成績(jī)是否優(yōu)秀與班級(jí)有關(guān)系.


【解析】(Ⅰ)由圖表得到乙班參加測(cè)試的90分以上的同學(xué)有6人,記為A、B、C、D、E、F.成績(jī)優(yōu)秀的記為A、B.然后利用枚舉法得到從這六名學(xué)生隨機(jī)抽取兩名的基本事件個(gè)數(shù),進(jìn)一步得到恰有一位學(xué)生成績(jī)優(yōu)秀的事件個(gè)數(shù),由古典概型概率計(jì)算公式得答案;(Ⅱ)直接由公式求出K的值,結(jié)合圖表得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形OBCD的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,一邊在x軸的正半軸上,已知∠BOD=60°,求菱形各邊和兩條對(duì)角線所在直線的傾斜角及斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知隨機(jī)變量 ξ 的分布列為P(ξ=k)= ( k=1,2,),則 P(2<x≤4)為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,設(shè)p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0,q:實(shí)數(shù)x滿足(x﹣3)2<1.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)縮小到原來(lái)的(縱坐標(biāo)不變),再將圖象上所有點(diǎn)向右平移個(gè)單位,所得函數(shù)圖象所對(duì)應(yīng)的解析式為__

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn),且函數(shù)= 是偶函數(shù)

(1)的解析式;

(2)已知,求函數(shù)的最大值和最小值

(3)函數(shù)的圖象上是否存在這樣的點(diǎn),其橫坐標(biāo)是正整數(shù),縱坐標(biāo)是一個(gè)完全平方數(shù)?如果存在,求出這樣的點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx和g(x)=lnx. (Ⅰ) 若a=b=1,求證:f(x)的圖象在g(x)圖象的上方;
(Ⅱ) 若f(x)和g(x)的圖象有公共點(diǎn)P,且在點(diǎn)P處的切線相同,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).

1)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說(shuō)明理由;

2)證明:無(wú)論點(diǎn)E在邊BC的何處,都有PE⊥AF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=logax(a>0a≠1)的圖象過(guò)點(diǎn)(4,2),

(1)a的值.

(2)g(x)=f(1-x)+f(1+x),g(x)的解析式及定義域.

(3)(2)的條件下,g(x)的單調(diào)減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案