【題目】已知數(shù)列為公差不為的等差數(shù)列, 為前項(xiàng)和, 的等差中項(xiàng)為,且.令數(shù)列的前項(xiàng)和為

1)求;

2)是否存在正整數(shù)成等比數(shù)列?若存在,求出所有的的值;若不存在,請說明理由.

【答案】

)當(dāng)可以使成等比數(shù)列.

【解析】試題分析:(1)由于的等差中項(xiàng)為,可得,又.利用等差數(shù)列通項(xiàng)公式將其轉(zhuǎn)化為表示,解方程組求出其值,進(jìn)而得到,結(jié)合通項(xiàng)公式特點(diǎn)可采用裂項(xiàng)相消法求和

2)假設(shè)存在正整數(shù)m,n1mn),使得T1,Tm,Tn成等比數(shù)列,則,當(dāng)m=2時(shí),化為,解得一組m,n的值滿足條件.當(dāng)m≥3時(shí),由于關(guān)于m單調(diào)遞增,可知,化為5n+27≤0,由于nm1,可知上式不成立

試題解析:()因?yàn)?/span>為等差數(shù)列,設(shè)公差為,則由題意得

整理得

所以

所以

)假設(shè)存在

由()知, ,所以

成等比,則有

,(1

因?yàn)?/span>,所以,

因?yàn)?/span>,當(dāng)時(shí),帶入(1)式,得;

綜上,當(dāng)可以使成等比數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在橢圓內(nèi),過的直線與橢圓相交于AB兩點(diǎn),且點(diǎn)是線段AB的中點(diǎn),O為坐標(biāo)原點(diǎn).

(Ⅰ)是否存在實(shí)數(shù)t,使直線和直線OP的傾斜角互補(bǔ)?若存在,求出的值,若不存在,試說明理由;

(Ⅱ)求面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知橢圓,其中,,分別為其左,右焦點(diǎn),點(diǎn)是橢圓上一點(diǎn),,且

(1)當(dāng),,且時(shí),求的值;

(2)若,試求橢圓離心率的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x+2x ,
(1)判斷函數(shù)的奇偶性;
(2)用函數(shù)單調(diào)性定義證明:f(x)在(0,+∞)上為單調(diào)增函數(shù);
(3)若f(x)=52x+3,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一枚質(zhì)地均勻的骰子,連續(xù)投擲兩次,計(jì)算:
(1)一共有多少種不同的結(jié)果?
(2)其中向上的點(diǎn)數(shù)之和是7的結(jié)果有多少種?
(3)向上的點(diǎn)數(shù)之和是7的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有道數(shù)學(xué)題,其中道選擇題, 道填空題,小明從中任取道題,求

1)所取的道題都是選擇題的概率;

2)所取的道題不是同一種題型的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,將數(shù)字1,2,3,…, )全部填入一個(gè)2行列的表格中,每格填一個(gè)數(shù)字,第一行填入的數(shù)字依次為, ,…, ,第二行填入的數(shù)字依次為, ,…, .記

(Ⅰ)當(dāng)時(shí),若, , ,寫出的所有可能的取值;

(Ⅱ)給定正整數(shù).試給出, ,…, 的一組取值,使得無論, ,…, 填寫的順序如何, 都只有一個(gè)取值,并求出此時(shí)的值;

(Ⅲ)求證:對(duì)于給定的以及滿足條件的所有填法, 的所有取值的奇偶性相同.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)求證:

(3)求證:當(dāng)時(shí), , 恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面給出了四個(gè)類比推理:

為實(shí)數(shù),若;類比推出: 為復(fù)數(shù),若.

若數(shù)列是等差數(shù)列, ,則數(shù)列也是等差數(shù)列;類比推出:若數(shù)列是各項(xiàng)都為正數(shù)的等比數(shù)列, ,則數(shù)列也是等比數(shù)列.

; 類比推出:若為三個(gè)向量,則.

④ 若圓的半徑為,則圓的面積為;類比推出:若橢圓的長半軸長為,短半軸長為,則橢圓的面積為.上述四個(gè)推理中,結(jié)論正確的是( )

A. ① ② B. ② ③ C. ① ④ D. ② ④

查看答案和解析>>

同步練習(xí)冊答案