【題目】哈師大附中高三學(xué)年統(tǒng)計(jì)甲、乙兩個(gè)班級一模數(shù)學(xué)分?jǐn)?shù)(滿分150分),每個(gè)班級20名同學(xué),現(xiàn)有甲、乙兩位同學(xué)的20次成績?nèi)缦铝星o葉圖所示:

(I)根據(jù)基葉圖求甲、乙兩位同學(xué)成績的中位數(shù),并將乙同學(xué)的成績的頻率分布直方圖填充完整;

(Ⅱ)根據(jù)基葉圖比較甲乙兩位同學(xué)數(shù)學(xué)成績的平均值及穩(wěn)定程度(不要求計(jì)算出具體值,給出結(jié)論即可)

(Ⅲ)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績中任意選出2個(gè)成績,設(shè)事件為“其中2 個(gè)成績分別屬于不同的同學(xué)”,求事件發(fā)生的概率.

【答案】(I)見解析.

(Ⅱ)乙的成績的平均分比甲的成績的平均分高,乙同學(xué)的成績比甲同學(xué)的成績更穩(wěn)定集中.

(III).

【解析】分析:(I)根據(jù)中位數(shù)的定義可得甲、乙兩位同學(xué)成績的中位數(shù),由莖葉圖可得頻數(shù),由頻數(shù)得頻率,從而可得縱坐標(biāo),進(jìn)而可補(bǔ)全直方圖;(Ⅱ)從莖葉圖可以看出,乙的成績的平均分比甲的成績的平均分高,乙同學(xué)的成績比甲同學(xué)的成績更穩(wěn)定集中;(III)利用列舉法,甲乙兩位同學(xué)的不低于140分的成績中任意選出2個(gè)成績的基本事件有個(gè),其中2個(gè)成績分屬不同同學(xué)的事件有個(gè),利用古典概型概率公式可得結(jié)果.

詳解(I)甲的成績的中位數(shù)是119,乙的成績的中位數(shù)是128,

(II)

從莖葉圖可以看出,乙的成績的平均分比甲的成績的平均分高,乙同學(xué)的成績比甲同學(xué)的成績更穩(wěn)定集中 . (III)甲同學(xué)的不低于140分的成績有2個(gè)設(shè)為a,b,乙同學(xué)的不低于140分的成績有3個(gè),設(shè)為c,d,e

現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績中任意選出2個(gè)成績有:(a,b),(a,c)(a,d)(a,e)(b,c)(b,d)(b,e)(c,d)(c,e)(d,e)共10種,

其中2個(gè)成績分屬不同同學(xué)的情況有: (a,c)(a,d)(a,e)(b,c)(b,d)(b,e)共6種

因此事件A發(fā)生的概率P(A)=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解中學(xué)生對交通安全知識的掌握情況,從農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)各選取100名同學(xué)進(jìn)行交通安全知識競賽.下圖1和圖2分別是對農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)參加競賽的學(xué)生成績按,分組,得到的頻率分布直方圖.

(Ⅰ)分別估算參加這次知識競賽的農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)的平均成績;

(Ⅱ)完成下面列聯(lián)表,并回答是否有的把握認(rèn)為“農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)的學(xué)生對交通安全知識的掌握情況有顯著差異”?

成績小于60分人數(shù)

成績不小于60分人數(shù)

合計(jì)

農(nóng)村中學(xué)

城鎮(zhèn)中學(xué)

合計(jì)

附:

臨界值表:

0.10

0.05

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:橢圓的頂點(diǎn)為,左右焦點(diǎn)分別為,,

(1)求橢圓的方程;

(2)過右焦點(diǎn)的直線與橢圓相交于兩點(diǎn),試探究在軸上是否存在定點(diǎn),使得為定值?若存在求出點(diǎn)的坐標(biāo),若不存在請說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,曲線處的切線方程為.

(1)求的解析式;

(2)當(dāng)時(shí),求證:;

(3)若對任意的恒成立,則實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:.

(1)若曲線參數(shù)方程為:為參數(shù)),求曲線的直角坐標(biāo)方程和曲線的普通方程;

(2)若曲線參數(shù)方程為:為參數(shù)),,且曲線與曲線交點(diǎn)分別為,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視廠家準(zhǔn)備在五一舉行促銷活動(dòng),現(xiàn)在根據(jù)近七年的廣告費(fèi)與銷售量的數(shù)據(jù)確定此次廣告費(fèi)支出.廣告費(fèi)支出x(萬元)和銷售量y(萬臺(tái))的數(shù)據(jù)如下:

(1)若用線性回歸模型擬合y與x的關(guān)系,求出y關(guān)于x的線性回歸方程(其中;參考方程:回歸直線,

(2)若用模型擬合y與x的關(guān)系,可得回歸方程,經(jīng)計(jì)算線性回歸模型和該模型的分別約為0.75和0.88,請用說明選擇哪個(gè)回歸模型更好;

(3)已知利潤z與x,y的關(guān)系為z=200y﹣x.根據(jù)(2)的結(jié)果回答:當(dāng)廣告費(fèi)x=20時(shí),銷售量及利潤的預(yù)報(bào)值是多少?(精確到0.01)參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,焦距為,點(diǎn)為橢圓上一點(diǎn),,的面積為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)為橢圓的上頂點(diǎn),過橢圓內(nèi)一點(diǎn)的直線交橢圓于兩點(diǎn),若的面積比為,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形中,的中點(diǎn),,,,現(xiàn)在沿折起使點(diǎn)到點(diǎn)P處,得到三棱錐,且平面平面.

(1)棱上是否存在一點(diǎn),使得平面?請說明你的結(jié)論;

(2)求證:平面;

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A,B,C三點(diǎn)滿足。

(1)求證:A,B,C三點(diǎn)共線;

(2)若A(1,cosx),B1+sinxcosx),且x∈[0, ],函數(shù)f(x)=2m+||+m2的最小值為5,求實(shí)數(shù)m的值。

查看答案和解析>>

同步練習(xí)冊答案