5.設集合M={x|-4≤x<2},集合N={x|3x<$\frac{1}{9}\}$,則M∩N中所含整數(shù)的個數(shù)為( 。
A.4B.3C.2D.1

分析 求出集合N不等式的解集,確定出集合N找出M與N解集的公共部分,即可求出兩集合的交集.

解答 解:由3x<$\frac{1}{9}$=3-2,解得:x<-2,
∴N={x|x<-2},
∵集合M={x|-4≤x<2},
∴M∩N={x|-4≤x<-2},
∴則M∩N中所含整數(shù)為-4,-3,即整數(shù)個數(shù)為2個,
故選:C.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.已知與向量$\overrightarrow{v}$=(1,0)平行的直線l與雙曲線$\frac{{x}^{2}}{4}$-y2=1相交于A、B兩點,則|AB|的最小值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,$0<ϕ<\frac{π}{2}$)的最小正周期為$\frac{2π}{3}$,最小值為-2,圖象過($\frac{5π}{9}$,0),求該函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知定義在R上的奇函數(shù)f(x),當x>0時,f(x)=-x2+2x
(1)求函數(shù)f(x)在R上的解析式;
(2)寫出f(x)單調(diào)區(qū)間(不必證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)f(x)=x+ex 的圖象在點O (0,1)處的切線方程是y=2x+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若集合A={-1,0,1,2},集合B={-1,1,3,5},則A∩B等于( 。
A.{-1,1}B.{-1,0,1}C.{-1,0,1,2}D.{-1,0,1,2,3,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=x2+2(m-1)x-5m-2,若函數(shù)f(x)的兩個零點x1,x2滿足x1<1,x2>1,則實數(shù)m的取值范圍是( 。
A.(1,+∞)B.(-∞,1)C.(-1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.化簡$\frac{si{n}^{2}(π-α)•cos(2π-α)•tan(-π+α)}{sin(-π+α)•tan(-α+3π)}$的結果為( 。
A.sinα•cosαB.-sinα•cosαC.sin2αD.cos2α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知某牌子汽車生產(chǎn)成本C(萬元)與月產(chǎn)量x(臺)的函數(shù)關系式為C=100+4x,單價p與產(chǎn)量x的函數(shù)關系式為p=25-$\frac{1}{8}x$,假設產(chǎn)品能全部售出.
(1)求利潤函數(shù)f(x)的解析式,并寫出定義域;
(2)當月產(chǎn)量x為何值時,利潤最大,并求出最大利潤.

查看答案和解析>>

同步練習冊答案