20.函數(shù)f(x)=x+ex 的圖象在點O (0,1)處的切線方程是y=2x+1.

分析 求出函數(shù)f(x)的導數(shù),求得切線的斜率,運用斜截式方程,即可得到所求切線方程.

解答 解:函數(shù)f(x)=x+ex 的導數(shù)為f′(x)=1+ex,
函數(shù)f(x)=x+ex 的圖象在點O (0,1)處的切線斜率為1+e0=2,
即有函數(shù)f(x)=x+ex 的圖象在點O (0,1)處的切線方程為y=2x+1.
故答案為:y=2x+1.

點評 本題考查導數(shù)的運用:求切線方程,注意正確求導和運用斜截式方程是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖,在△ABC中,AB=2,AC=3,∠BAC=60°,AD是∠BAC的角平分線交BC于D,則$\overrightarrow{AD}$$•\overrightarrow{AC}$的值等于(  )
A.$\frac{17}{5}$B.$\frac{33}{5}$C.6D.$\frac{27}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)$f(x)=a-\frac{2}{{{2^x}+1}}(a∈R)$是奇函數(shù).
(1)求a的值;
(2)判斷函數(shù)f(x)的單調(diào)性,(不需證明)
(3)若對任意的t∈R,不等式f(kt2+2)+f(t2-tk)>0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若10件產(chǎn)品中有7件正品,3件次品,從中任取2件,則恰好取到1件次品的概率是( 。
A.$\frac{3}{7}$B.$\frac{7}{15}$C.$\frac{8}{15}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設(shè)0<x<1,a,b都為大于零的常數(shù),則$\frac{{a}^{2}}{x}$+$\frac{^{2}}{1-x}$的最小值為( 。
A.(a-b)2B.(a+b)2C.a2b2D.a2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)集合M={x|-4≤x<2},集合N={x|3x<$\frac{1}{9}\}$,則M∩N中所含整數(shù)的個數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.log36-log32=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.某單位有職工100人,不到35歲的有45人,35歲到49歲的25人,剩下的為50歲以上的人,現(xiàn)在抽取20人,按年齡段進行分層抽樣,50歲以上應(yīng)抽取的人數(shù)為6人.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設(shè)集合A={x|x2-5x+6<0},B={x|2x-5>0},則A∩B=(  )
A.$(-3,-\frac{5}{2})$B.$(2,\frac{5}{2})$C.$(\frac{5}{2},3)$D.$(-3,\frac{5}{2})$

查看答案和解析>>

同步練習冊答案