15.已知與向量$\overrightarrow{v}$=(1,0)平行的直線l與雙曲線$\frac{{x}^{2}}{4}$-y2=1相交于A、B兩點(diǎn),則|AB|的最小值為4.

分析 由題意可設(shè)y=t,代入雙曲線方程,求得交點(diǎn)A,B,由兩點(diǎn)距離公式結(jié)合二次函數(shù)最值求法,可得最小值.

解答 解:與向量$\overrightarrow{v}$=(1,0)平行的直線l,
可設(shè)為y=t,
代入雙曲線$\frac{{x}^{2}}{4}$-y2=1,可得
x=±2$\sqrt{1+{t}^{2}}$,
則A(2$\sqrt{1+{t}^{2}}$,t),B(-2$\sqrt{1+{t}^{2}}$,t),
可得|AB|=4$\sqrt{1+{t}^{2}}$≥4,
當(dāng)t=0時(shí),|AB|取得最小值4.
故答案為:4.

點(diǎn)評(píng) 本題考查雙曲線的方程和應(yīng)用,同時(shí)考查向量平行的性質(zhì),以及運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知sinα+cosα=$\frac{2}{3}$,且0<α<π,則cosα-sinα=( 。
A.$\frac{2\sqrt{3}}{3}$B.-$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{14}}{3}$D.-$\frac{\sqrt{14}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且sinB(tanA+tanC)=tanAtanC.
(1)求證:b2=ac;
(2)若a=2c=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在棱長(zhǎng)為2的正四面體ABCD中,E,F(xiàn)分別是BC,AD的中點(diǎn),則$\overrightarrow{AE}$$•\overrightarrow{CF}$=( 。
A.0B.-2C.2D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,在△ABC中,AB=2,AC=3,∠BAC=60°,AD是∠BAC的角平分線交BC于D,則$\overrightarrow{AD}$$•\overrightarrow{AC}$的值等于(  )
A.$\frac{17}{5}$B.$\frac{33}{5}$C.6D.$\frac{27}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,且a(sinA-sinB)+bsinB=csinC.
(Ⅰ)求角c的值
(Ⅱ)若2cos2$\frac{A}{2}$-2sin2$\frac{B}{2}$=$\frac{\sqrt{3}}{2}$,且A<B,求$\frac{c}{a}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.點(diǎn)P(1,-4)到直線4x+3y-2=0的距離為( 。
A.2B.5C.7D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知$α∈(0,\frac{π}{2}),sin(\frac{π}{4}-α)=\frac{{\sqrt{10}}}{10}$
(1)求tan2α的值;
(2)求$\frac{{sin(α+\frac{π}{4})}}{sin2α+cos2α+1}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)集合M={x|-4≤x<2},集合N={x|3x<$\frac{1}{9}\}$,則M∩N中所含整數(shù)的個(gè)數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案