【題目】已知橢圓 )的離心率為,以橢圓的四個頂點為頂點的四邊形的面積為8.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,斜率為的直線與橢圓交于, 兩點,點在直線的左上方.若,且直線, 分別與軸交于, 點,求線段的長度.

【答案】(1)(2)

【解析】試題分析: (1)由已知條件求出 的值,得出橢圓方程; (2)設(shè)直線 的方程, 聯(lián)立直線與橢圓方程,求出兩根之和,兩根之積,求出 ,得到為等腰直角三角形,求出線段 的長.

試題解析:(1)由題意知,解之,得.

所以橢圓的方程為;

(2)設(shè)直線 ,

代入中,化簡整理,得,

,得,

于是有, ,

注意到,

上式中,分子

從而, ,由,可知,

所以是等腰直角三角形, ,即為所求.

點睛:本題主要考查了求橢圓方程以及直線與橢圓相交時求另一線段的長,計算量比較大,屬于中檔題.解題思路:在(1)中,直接由已知條件得出;在(2)中,通過求出,而,得出,得到為等腰直角三角形,再求出線段 的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2|x|﹣1.
(1)證明函數(shù)f(x)是偶函數(shù);
(2)在如圖所示的平面直角坐標(biāo)系中作出函數(shù)f(x)的圖象.并根據(jù)圖象寫出函數(shù)f(x)的單調(diào)區(qū)間;

(3)求函數(shù)f(x)當(dāng)x∈[﹣2,4]時的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=,數(shù)列{an}滿足a1=1,an+1f(an)(n∈N*).

(1)證明數(shù)列{}是等差數(shù)列,并求出數(shù)列{an}的通項公式;

(2)記Sna1a2a2a3+…+anan+1,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+ ,且f(1)=2.
(1)求m的值;
(2)判斷f(x)的奇偶性;
(3)用定義法證明f(x)在區(qū)間(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】河南多地遭遇跨年霾,很多學(xué)校調(diào)整元旦放假時間,提前放假讓學(xué)生們在家里躲霾,鄭州市根據(jù)《鄭州市人民政府辦公廳關(guān)于將重污染天氣黃色預(yù)警升級為紅色預(yù)警的通知》.自12月29日12時將黃色預(yù)警升級為紅色預(yù)警,12月30日0時啟動I級響應(yīng),明確要求:“幼兒園、中小學(xué)等教育機構(gòu)停課,停課不停學(xué)”,學(xué)生和家長對停課這一舉措褒貶不一,有為了健康贊成的,有怕耽誤學(xué)習(xí)不贊成的.某調(diào)查機構(gòu)為了了解公眾對該舉措的態(tài)度,隨機調(diào)查采訪了50人,將調(diào)查情況整理匯總成下表:

年齡(歲)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

6

9

6

3

4

(1)請補全被調(diào)查人員年齡的頻率分布直方圖;

(2)若從年齡在的被調(diào)查者中分別隨機選取一人進行追蹤調(diào)查,求這兩人都贊成“停課”這一舉措的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一顆骰子投擲兩次分別得到點數(shù)a,b,則直線axby=0與圓(x2)2y22相交的概率為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的右焦點為,短軸的一個端點為,直線交橢圓兩點,若,點到直線的距離等于,則橢圓的焦距長為()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四面體的棱長為, 為棱的中點,過作其外接球的截面,則截面面積的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義函數(shù)y=f(x),x∈D(定義域),若存在常數(shù)C,對于任意x1∈D,存在唯一的x2∈D,使得 =C,則稱函數(shù)f(x)在D上的“均值”為C,已知f(x)=lgx,x∈[10,100],則函數(shù)f(x)在[10,100]上的均值為(
A.
B.
C.
D.10

查看答案和解析>>

同步練習(xí)冊答案