【題目】已知函數(shù)f(x)=x2﹣2|x|﹣1.
(1)證明函數(shù)f(x)是偶函數(shù);
(2)在如圖所示的平面直角坐標(biāo)系中作出函數(shù)f(x)的圖象.并根據(jù)圖象寫出函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)當(dāng)x∈[﹣2,4]時的最大值與最小值.
【答案】
(1)證明:∵x∈R,f(﹣x)=(﹣x)2﹣2|﹣x|﹣1=x2﹣2|x|+1=f(x),
∴f(x)是偶函數(shù)
(2)解:∵當(dāng)x≥0時,f(x)=x2﹣2x﹣1,當(dāng)x<0時,f(x)=x2+2x﹣1,
則函數(shù)f(x)圖象如圖所示
(3)解:由圖知當(dāng)x=﹣1和1時有最小值為﹣2.當(dāng)x=4時有最大值7
【解析】(1)根據(jù)偶函數(shù)的定義即可證明,(2)去絕對值,化為分段函數(shù),畫圖即可,(3)由圖象可求出f(x)當(dāng)x∈[﹣2,4]時的最大值與最小值.
【考點精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識點,需要掌握當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一塊多邊形的菜地,它的水平放置的平面圖形的斜二測直觀圖是直角梯形(如圖)∠ABC=45°,AB= , AD=1,DC⊥BC,則這塊菜地的面積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)在(﹣∞,0)上單調(diào)遞減,且f(2)=0,則不等式xf(x﹣1)>0的解集是( )
A.(﹣3,﹣1)
B.(﹣3,1)∪(2,+∞)
C.(﹣3,0)∪(3,+∞)
D.(﹣1,0)∪(1,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;
(2)若存在唯一整數(shù),使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點,焦點在軸上,橢圓的短軸端點和焦點所組成的四邊形為正方形,且橢圓上任意一點到兩個焦點的距離之和為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓相交于兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=lgx+1(1≤x≤100),則g(x)=f2(x)+f(x2)的值域為( )
A.[﹣2,7]
B.[2,7]
C.[﹣2,14]
D.[2,14]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且(2b-c)cos A=acos C.
(1)求角A的大小;
(2)若a=3,b=2c,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的離心率為,以橢圓的四個頂點為頂點的四邊形的面積為8.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,斜率為的直線與橢圓交于, 兩點,點在直線的左上方.若,且直線, 分別與軸交于, 點,求線段的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com