【題目】已知橢圓)的右焦點(diǎn)為,短軸的一個端點(diǎn)為,直線交橢圓,兩點(diǎn),若,點(diǎn)到直線的距離等于,則橢圓的焦距長為()

A. B. C. D.

【答案】B

【解析】

如圖所示,設(shè)為橢圓的左焦點(diǎn),連接則四邊形是平行四邊形,可得解得,,可得點(diǎn)到直線的距離即有解得,,則焦距為,故選B.

【方法點(diǎn)晴】本題主要考查利用橢圓的簡單性質(zhì)點(diǎn)到直線的距離公式求橢圓的定義,屬于難題. 求解與橢圓性質(zhì)有關(guān)的問題時(shí)要結(jié)合圖形進(jìn)行分析,既使不畫出圖形,思考時(shí)也要聯(lián)想到圖形,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、實(shí)軸、虛軸、漸近線等雙曲線的基本量時(shí),要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系. 解答本題的關(guān)鍵是利用橢圓的對稱性得到從而利用橢圓的定義求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=lgx+1(1≤x≤100),則g(x)=f2(x)+f(x2)的值域?yàn)椋?/span>
A.[﹣2,7]
B.[2,7]
C.[﹣2,14]
D.[2,14]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:

甲商場:顧客轉(zhuǎn)動如圖所示圓盤,當(dāng)指針指向陰影部分(圖中四個陰影部分均為扇形,且每個扇形圓心角均為15°,邊界忽略不計(jì)) 即為中獎.

乙商場:從裝有3個白球3個紅球的盒子中一次性摸出2個球(球除顏色外不加區(qū)分),如果摸到的是2個紅球,即為中獎.

問:購買該商品的顧客在哪家商場中獎的可能性大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的離心率為,以橢圓的四個頂點(diǎn)為頂點(diǎn)的四邊形的面積為8.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,斜率為的直線與橢圓交于, 兩點(diǎn),點(diǎn)在直線的左上方.若,且直線, 分別與軸交于 點(diǎn),求線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是公差不為零的等差數(shù)列,,且,成等比數(shù)列.

(1)求數(shù)列的通項(xiàng);

(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 在△中, 點(diǎn)邊上, .

(Ⅰ)求;

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn)

(Ⅰ)求橢圓的方程.

(Ⅱ)若, 是橢圓上兩個不同的動點(diǎn),且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lg(1+x)+lg(1﹣x).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 的離心率為,短軸的一個端點(diǎn)到右焦點(diǎn)的距離為

(1)求橢圓C的方程;

(2)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為,求△AOB面積的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案