【題目】若規(guī)定E={a1 , a2 , …,a10}的子集{at1 , at2 , …,ak}為E的第k個子集,其中 ,則E的第211個子集是

【答案】{a1,a2,a5,a7,a8}
【解析】解:∵27=128<211,而28=256>211,

∴E的第211個子集包含a8,

此時211﹣128=83,

∵26=64<83,27=128>83,

∴E的第211個子集包含a7,

此時83﹣64=19,

∵24=16<19,25=32>19,

∴E的第211個子集包含a5,

此時19﹣16=3

∵21<3,22=4>3,

∴E的第211個子集包含a2,

此時3﹣2=1,20=1,

∴E的第211個子集包含a1

∴E的第211個子集是{a1,a2,a5,a7,a8};

所以答案是:{a1,a2,a5,a7,a8}.

【考點精析】關于本題考查的子集與真子集,需要了解任何一個集合是它本身的子集;n個元素的子集有2n個,n個元素的真子集有2n -1個,n個元素的非空真子集有2n-2個才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx= ,若f1-x=f1+x),且f0=3.

(Ⅰ)求b,c的值;

(Ⅱ)試比較m∈R)的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了緩解交通壓力,某省在兩個城市之間特修一條專用鐵路,用一列火車作為公共交通車.已知每日來回趟數(shù)y是每次拖掛車廂節(jié)數(shù)x的一次函數(shù),如果該列火車每次拖4節(jié)車廂,每日能來回16趟;如果每次拖6節(jié)車廂,則每日能來回10趟,火車每日每次拖掛車廂的節(jié)數(shù)是相同的,每節(jié)車廂滿載時能載客110人.

(1)求出y關于x的函數(shù);

(2)該火車滿載時每次拖掛多少節(jié)車廂才能使每日營運人數(shù)最多?并求出每天最多的營運人數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),給出下列結論:

(1)若對任意,且,都有,則為R上的減函數(shù);

(2)若為R上的偶函數(shù),且在內是減函數(shù), (-2)=0,則>0解集為(-2,2);

(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);

(4)t為常數(shù),若對任意的,都有關于對稱。

其中所有正確的結論序號為_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形中, , , , 、分別在、上, ,現(xiàn)將四邊形沿折起,使平面平面

)若,是否存在折疊后的線段上存在一點,且,使得平面?若存在,求出的值;若不存在,說明理由.

)求三棱錐的體積的最大值,并求此時點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,多面體PABCD的直觀圖及三視圖如圖所示,E、F分別為PC、BD的中點.

I)求證:EF∥平面PAD;

II)求證:平面PDC⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解答題
(1)解不等式:|2x﹣1|﹣|x|<1;
(2)設a2﹣2ab+5b2=4對a,b∈R成立,求a+b的最大值及相應的a,b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= ,g(x)=lnx+ (a>0).
(1)求函數(shù)f(x)的極值;
(2)若x1、x2∈(0,+∞),使得g(x1)≤f(x2)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=lnx+ ,g(x)=ex (e是自然對數(shù)的底數(shù),a∈R).
(Ⅰ)求證:|f(x)|≥﹣(x﹣1)2+
(Ⅱ)已知[x]表示不超過x的最大整數(shù),如[1.9]=1,[﹣2.1]=﹣3,若對任意x1≥0,都存在x2>0,使得g(x1)≥[f(x2)]成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案