.已知橢圓的一個焦點為F,若橢圓上存在點P,滿足以橢圓短軸為直徑的圓與線段PF相切于線段PF的中點,則該橢圓的離心率為(    )

A.             B.            C            D.

 

【答案】

A

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的一個焦點為F,若橢圓上存在點P,滿足以橢圓短軸為直徑的圓與線段PF相切于線段PF的中點,則該橢圓的離心率為( 。
A、
5
3
B、
2
3
C、
2
2
D、
5
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的一個焦點F1(0,-2
2
)
,對應(yīng)的準線方程為y=-
9
4
2
,且離心率e滿足
2
3
,e,
4
3
成等比數(shù)列.
(1)求橢圓的方程;
(2)試問是否存在直線l,使l與橢圓交于不同的兩點M、N,且線段MN恰被直線x=-
1
2
平分?若存在,求出l的傾斜角的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的一個焦點為F1(-3,0),長軸長為10,中心在坐標原點,則此橢圓的離心率為
3
5
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的一個焦點F1(0,-2
2
)
,且離心率e滿足
2
3
,e,
4
3
成等比數(shù)列.
(1)求橢圓的標準方程;
(2)試問是否存在直線l,使l與橢圓交于不同的兩點M,N,且線段MN恰被點P(-
1
2
3
2
)
平分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的一個焦點為F(1,0),離心率e=
1
2
,則橢圓的標準方程為( 。

查看答案和解析>>

同步練習冊答案