已知橢圓的一個焦點為F1(-3,0),長軸長為10,中心在坐標原點,則此橢圓的離心率為
3
5
3
5
分析:由橢圓的一個焦點為F1(-3,0),長軸長為10,中心在坐標原點,知2a=10,c=3,由此能求出橢圓的離心率.
解答:解:∵橢圓的一個焦點為F1(-3,0),長軸長為10,中心在坐標原點,
∴2a=10,即a=5,c=3,
∴此橢圓的離心率e=
c
a
=
3
5

故答案為:
3
5
點評:本題考查橢圓的簡單性質的應用,是基礎題.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的一個焦點為F,若橢圓上存在點P,滿足以橢圓短軸為直徑的圓與線段PF相切于線段PF的中點,則該橢圓的離心率為( 。
A、
5
3
B、
2
3
C、
2
2
D、
5
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的一個焦點為F(1,0),離心率e=
1
2
,則橢圓的標準方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的一個焦點為(2,0),則橢圓的方程是( 。

A.                                 B.

C.                                 D.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆安徽省毫州市高二上學期質量檢測文科數(shù)學 題型:選擇題

已知橢圓的一個焦點為(0,2)則的值為(    )

A.2      B.3      C.5       D.7

 

 

查看答案和解析>>

同步練習冊答案