解答:
解:由y=f(x)-a|x-1|=0得f(x)=a|x-1|,
作出函數(shù)y=f(x),y=g(x)=a|x-1|的圖象,
當(dāng)a≤0,不滿足條件,
則a>0,此時(shí)g(x)=a|x-1|=
,
當(dāng)-3<x<0時(shí),f(x)=-x
2-3x,g(x)=-a(x-1),
當(dāng)直線和拋物線相切時(shí),有三個(gè)零點(diǎn),
此時(shí)-x
2-3x=-a(x-1),
即x
2+(3-a)x+a=0,
則由△=(3-a)
2-4a=0,即a
2-10a+9=0,解得a=1或a=9,
當(dāng)a=9時(shí),g(x)=-9(x-1),g(0)=9,此時(shí)不成立,∴此時(shí)a=1,
要使兩個(gè)函數(shù)有四個(gè)零點(diǎn),則此時(shí)0<a<1,
若a>1,此時(shí)g(x)=-a(x-1)與f(x),有兩個(gè)交點(diǎn),
此時(shí)只需要當(dāng)x>1時(shí),f(x)=g(x)有兩個(gè)不同的零點(diǎn)即可,
即x
2+3x=a(x-1),整理得x
2+(3-a)x+a=0,
則由△=(3-a)
2-4a>0,即a
2-10a+9>0,解得a<1(舍去)或a>9,
綜上a的取值范圍是(0,1)∪(9,+∞),
方法2:由f(x)-a|x-1|=0得f(x)=a|x-1|,
若x=1,則4=0不成立,
故x≠1,
則方程等價(jià)為a=
=
=|
|=|x-1+
+5|,
設(shè)g(x)=x-1+
+5,
當(dāng)x>1時(shí),g(x)=x-1+
+5≥
2+5=4+5=9,當(dāng)且僅當(dāng)x-1=
,即x=3時(shí)取等號(hào),
當(dāng)x<1時(shí),g(x)=x-1+
+5
≤5-2=5-4=1,當(dāng)且僅當(dāng)-(x-1)=-
,即x=-1時(shí)取等號(hào),
則|g(x)|的圖象如圖:
若方程f(x)-a|x-1|=0恰有4個(gè)互異的實(shí)數(shù)根,
則滿足a>9或0<a<1,
故答案為:(0,1)∪(9,+∞)