分析 (1)利用奇函數(shù)的定義,即可證明;
(2)利用導數(shù)大于0,即可證明.
解答 證明:(1)函數(shù)的定義域為R,
∴f(x)=$\frac{{2}^{x}-1}{2({2}^{x}+1)}$
∴f(-x)=$\frac{{2}^{-x}-1}{2({2}^{-x}+1)}$=-$\frac{{2}^{x}-1}{2({2}^{x}+1)}$=-f(x),
∴函數(shù)f(x)是奇函數(shù);
(2)∵f(x)=$\frac{1}{2}$-$\frac{1}{{2}^{x}+1}$
∴f′(x)=-$\frac{{-2}^{x}ln2}{({2}^{x}+1)^{2}}$>0
∴函數(shù)f(x)在R上是增函數(shù).
點評 本題考查函數(shù)的單調性、奇偶性,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\frac{3π}{16}$,0) | B. | ($\frac{3π}{16}$,0) | C. | ($\frac{7π}{16}$,0) | D. | ($\frac{15π}{16}$,0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-2≤x≤-1} | B. | {x|-2≤x≤-1或x=0} | C. | {x|-2≤x<-1} | D. | {x|-2≤x<-1或x=0} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,3) | B. | (1,2] | C. | [2,3) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com