【題目】某學(xué)校共有教職工900人,分成三個批次進行繼續(xù)教育培訓(xùn),在三個批次中男、女教職工人數(shù)如下表所示.已知在全體教職工中隨機抽取一名,抽到第二批次中女職工的概率是0.16.

第一批次

第二批次

第三批次

女教職工

196

男教職工

204

156

1)求的值;

2)現(xiàn)用分層抽樣的方法在全體教職工中抽取54名做培訓(xùn)效果的調(diào)查,問應(yīng)在第三批次中抽取教職工多少名?

3)已知,,求第三批次中女教職工比男教職工多的概率.

【答案】12)應(yīng)在第三批次中抽取12名(3

【解析】

1)在全體教職工中隨機抽取1名,抽到第2批次中女教師職工的概率是0.16,用除以總體數(shù)等于0.16,即可求出的值;

2)根據(jù)總體數(shù)和第1批次和第2批次的總?cè)藬?shù)和總體數(shù),得到第三批次的人數(shù),根據(jù)每個個體被抽到的概率,列出等式,解方程即可;

3)試驗發(fā)生包含的事件數(shù)可以通過列舉得到結(jié)果,滿足條件的事件也可以通過列舉得到事件數(shù),再利用古典概型的求概率公式,計算概率.

1)由,解得.

2)第三批次的人數(shù)為,

設(shè)應(yīng)在第三批次中抽取名,則,解得.

∴應(yīng)在第三批次中抽取12.

3)設(shè)第三批次中女教職工比男教職工多的事件為,第三批次女教職工和男教職工數(shù)記為數(shù)對,由(2)知,,,)則基本事件總數(shù)有:

,,,,,,,,,共9個,

而事件包含的基本事件有:,,,共4個,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且函數(shù)為偶函數(shù)。

1)求的解析式;

2)若方程有三個不同的實數(shù)根,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐OABCD中,底面ABCD四邊長為1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,MOA的中點,NBC的中點.

1)證明:直線MN∥平面OCD;

2)求異面直線ABMD所成角的大;

3)求點B到平面OCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),的兩個非空子集,如果存在一個函數(shù)滿足:① ;② 對任意,當(dāng)時,恒有,那么稱這兩個集合為“的保序同構(gòu)”,以下集合對不是“的保序同構(gòu)”的是( )

A.B.

C.,D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系,直線過點,且傾斜角為,以為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求直線的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線與圓交于兩點,若,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:實數(shù)滿足不等式;

命題q:關(guān)于不等式對任意的恒成立.

1)若命題為真命題,求實數(shù)的取值范圍;

2)若“為假命題,為真命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有四座城市、、,其中的正東方向,且與相距,的北偏東方向,且與相距;的北偏東方向,且與相距,一架飛機從城市出發(fā)以的速度向城市飛行,飛行了,接到命令改變航向,飛向城市,此時飛機距離城市有(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某運動制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對其身高和臂展進行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應(yīng)的散點圖,并求得其回歸方程為,以下結(jié)論中不正確的為

A. 15名志愿者身高的極差小于臂展的極差

B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,

C. 可估計身高為190厘米的人臂展大約為189.65厘米,

D. 身高相差10厘米的兩人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)濟訂貨批量模型,是目前大多數(shù)工廠、企業(yè)等最常采用的訂貨方式,即某種物資在單位時間的需求量為某常數(shù),經(jīng)過某段時間后,存儲量消耗下降到零,此時開始訂貨并隨即到貨,然后開始下一個存儲周期,該模型適用于整批間隔進貨、不允許缺貨的存儲問題,具體如下:年存儲成本費(元)關(guān)于每次訂貨(單位)的函數(shù)關(guān)系,其中為年需求量,為每單位物資的年存儲費,為每次訂貨費. 某化工廠需用甲醇作為原料,年需求量為6000噸,每噸存儲費為120元/年,每次訂貨費為2500元.

(1)若該化工廠每次訂購300噸甲醇,求年存儲成本費;

(2)每次需訂購多少噸甲醇,可使該化工廠年存儲成本費最少?最少費用為多少?

查看答案和解析>>

同步練習(xí)冊答案