【題目】已知函數(shù).

1)當時,求的極值;

2)若是函數(shù)的兩個極值點,求的取值范圍.

【答案】1,;(2.

【解析】

1)由題意知,函數(shù)的定義域為,對函數(shù)進行求導,利用導數(shù)判斷函數(shù)的單調(diào)性并求其極值即可;

2)對函數(shù)進行求導,設(shè),根據(jù)函數(shù)極值點的定義轉(zhuǎn)化為有二不等正根,,利用一元二次方程根的分布的相關(guān)知識求出的取值范圍,利用韋達定理求出之間的關(guān)系,通過作差求出的表達式,設(shè),則,通過構(gòu)造函數(shù)并對其求導判斷單調(diào)性求其最值即可求出的取值范圍.

1)由題意知,函數(shù)的定義域為

因為,

所以可得之間的關(guān)系如下表:

1

0

0

極大值

極小值

∴由表中的數(shù)據(jù)可知,

,.

2)由題意知,,

設(shè),

因為函數(shù)存在兩個極值點,

所以有二不等正根,,

,解得,

因為,是方程的兩根,

由韋達定理可得,,,即

可得,

可得,

,

,,∴,

設(shè),則,

所以,∴上單調(diào)遞減,

,即的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】我國全面二孩政策已于201611日起正式實施.國家統(tǒng)計局發(fā)布的數(shù)據(jù)顯示,從2012年到2017年,中國的人口自然增長率變化始終不大,在5‰上下波動(如圖).

為了了解年齡介于24歲至50歲之間的適孕夫妻對生育二孩的態(tài)度如何,統(tǒng)計部門按年齡分為9組,每組選取150對夫妻進行調(diào)查統(tǒng)計有生育二孩意愿的夫妻數(shù),得到下表:

年齡區(qū)間

有意愿數(shù)

80

81

87

86

84

83

83

70

66

1)設(shè)每個年齡區(qū)間的中間值為,有意愿數(shù)為,求樣本數(shù)據(jù)的線性回歸直線方程,并求該模型的相關(guān)系數(shù)(結(jié)果保留兩位小數(shù));

2)從,,,,這五個年齡段中各選出一對夫妻(能代表該年齡段超過半數(shù)夫妻的意愿)進一步調(diào)研,再從這5對夫妻中任選2對夫妻.求其中恰有一對不愿意生育二孩的夫妻的概率.

(參考數(shù)據(jù)和公式:,,,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著手機的發(fā)展,“微信”逐漸成為人們支付購物的一種形式.某機構(gòu)對“使用微信支付”的態(tài)度進行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信支付”贊成人數(shù)如下表.

年齡

(單位:歲)

,

,

,

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(Ⅰ)若以“年齡45歲為分界點”,由以上計數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認為“使用微信支付”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計

贊成

不贊成

合計

(Ⅱ)若從年齡在的被調(diào)查人中按照贊成與不贊成分層抽樣,抽取5人進行追蹤調(diào)查,在5人中抽取3人做專訪,求3人中不贊成使用微信支付的人數(shù)的分布列和期望值.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱長為1的正方體中,已知點P為側(cè)面上的一動點,則下列結(jié)論正確的是(

A.若點P總保持,則動點P的軌跡是一條線段;

B.若點P到點A的距離為,則動點P的軌跡是一段圓;

C.P到直線與直線的距離相等,則動點P的軌跡是一段拋物線;

D.P到直線與直線的距離比為,則動點P的軌跡是一段雙曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖為某市國慶節(jié)7天假期的商品房日認購量(單位:套)與日成交量(單位:套)的折線圖,則下面結(jié)論中正確的是( )

A.日成交量的中位數(shù)是16

B.日成交量超過日平均成交量的有1

C.日認購量與日期是正相關(guān)關(guān)系

D.日認購量的方差大于日成交量的方差

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列判斷正確的是( )

A. ”是“”的充分不必要條件

B. 命題“若,則”的否命題為“若,則

C. 命題“,”的否定是“

D. 若命題“”為假命題,則命題,都是假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,且保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:

交強險浮動因素和費率浮動比率表

浮動因素

浮動比率

上一個年度未發(fā)生有責任道路交通事故

下浮

上兩個年度未發(fā)生有責任道路交通事故

下浮

上三個及以上年度未發(fā)生有責任道路交通事故

下浮

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

上一個年度發(fā)生兩次及兩次以上有責任道路交通事故

上浮

上一個年度發(fā)生有責任道路交通死亡事故

上浮

某機構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

數(shù)量

10

5

5

20

15

5

1)求一輛普通6座以下私家車在第四年續(xù)保時保費高于基本保費的頻率;

2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設(shè)購進一輛事故車虧損5000元,一輛非事故車盈利10000.且各種投保類型車的頻率與上述機構(gòu)調(diào)查的頻率一致,完成下列問題:

①若該銷售商店內(nèi)有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機挑選2輛車,求這2輛車恰好有一輛為事故車的概率;

②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學名著,由明代數(shù)學家程大位編著,它對我國民間普及珠算和數(shù)學知識起到了很大的作用,是東方古代數(shù)學的名著.在這部著作中,許多數(shù)學問題都是以歌訣形式呈現(xiàn)的,九兒問甲歌就是其中一首:一個公公九個兒,若問生年總不知,自長排來差三歲,共年二百又零七,借問長兒多少歲,各兒歲數(shù)要詳推.”這首歌決的大意是:一位老公公有九個兒子,九個兒子從大到小排列,相鄰兩人的年齡差三歲,并且兒子們的年齡之和為207歲,請問大兒子多少歲,其他幾個兒子年齡如何推算.”在這個問題中,記這位公公的第個兒子的年齡為,則

A.17B.29C.23D.35

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線焦點為,直線與拋物線交于兩點.到準線的距離之和最小為8.

1)求拋物線方程;

2)若拋物線上一點縱坐標為,直線分別交準線于.求證:以為直徑的圓過焦點.

查看答案和解析>>

同步練習冊答案