【題目】如圖,在正方體ABCD﹣A1B1C1D1中,棱長為a,E是棱DD1的中點(diǎn)

(1)求三棱錐E﹣A1B1B的體積;
(2)在棱C1D1上是否存在一點(diǎn)F,使B1F∥平面A1BE?證明你的結(jié)論.

【答案】
(1)解:
(2)解:存在.

取C1D1中點(diǎn)F,連B1F,EF,C1D,連B1A交A1B于O,

∵EF是△D1C1D的中位線∴ ,

因?yàn)檎襟wABCD﹣A1B1C1D1

所以

又因?yàn)樗倪呅蜝1ADC1是平行四邊形,

所以B1A∥C1D,B1A=C1D

所以B1O∥EF,B1O=EF,

所以四邊形B1OEF是平行四邊形,

所以B1F∥OE,

所以B1F∥平面A1BE.


【解析】(1)代入棱錐的體積公式計(jì)算;(2)取C1D1中點(diǎn)F,連B1F,EF,C1D,連B1A交A1B于O,則可證四邊形B1OEF為平行四邊形,得出BF∥OE,從而得出B1F∥平面A1BE.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin ωxcos ωx-sin2ωx+1(ω>0)圖象的相鄰兩條對稱軸之間的距離為.

()ω的值及函數(shù)f(x)的單調(diào)遞減區(qū)間;

()如圖,在銳角三角形ABC中有f(B)=1,若在線段BC上存在一點(diǎn)D使得AD=2AC,CD-1求三角形ABC的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答
(1)設(shè)全集為R,A={x|3<x<7},B={x|4<x<10},求R(A∪B)及(RA)∩B.
(2)C={x|a﹣4≤x≤a+4},且A∩C=A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別為,且離心率為,點(diǎn)為橢圓上一動(dòng)點(diǎn), 內(nèi)切圓面積的最大值為.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點(diǎn)為,過右焦點(diǎn)的直線與橢圓相交于兩點(diǎn),連接并延長分別交直線兩點(diǎn),以為直徑的圓是否恒過定點(diǎn)?若是,請求出定點(diǎn)坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=log (x2﹣4x﹣5)的單調(diào)遞減區(qū)間為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x+1)﹣loga(1﹣x),a>0且a≠1.
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I)當(dāng)a=2時(shí),求曲線在點(diǎn)處的切線方程;

(II)設(shè)函數(shù),z.x.x.k討論的單調(diào)性并判斷有無極值,有極值時(shí)求出極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)氣象中心觀察和預(yù)測:發(fā)生于M地的沙塵暴一直向正南方向移動(dòng),其移動(dòng)速度v(km/h)與時(shí)間t(h)的函數(shù)圖象如圖所示,過線段OC上一點(diǎn)T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即為t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).

(1)當(dāng)t=4時(shí),求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=(x2﹣3)ex , 當(dāng)m在R上變化時(shí),設(shè)關(guān)于x的方程f2(x)﹣mf(x)﹣ =0的不同實(shí)數(shù)解的個(gè)數(shù)為n,則n的所有可能的值為(
A.3
B.1或3
C.3或5
D.1或3或5

查看答案和解析>>

同步練習(xí)冊答案