精英家教網 > 高中數學 > 題目詳情

【題目】三棱錐的一條棱長為,其余棱長均為2,當三棱錐的體積最大時, 它的外接球的表面積為( )

A. B. C. D.

【答案】B

【解析】由題意畫出三棱錐的圖形,

其中AB=BC=CD=BD=AC=2,AD=m;

取BC,AD的中點分別為E,F,

可知AE⊥BC,DE⊥BC,

且AE∩DE=E,

∴BC⊥平面AED,

平面ABC平面BCD時,三棱錐A﹣BCD的體積最大,

此時AD=m=AE=×=;

設三棱錐外接球的球心為O,半徑為R,由球體的對稱性知,

球心O在線段EF上,

OA=OC=R,又EF===,

設OF=x,OE=x,

R2=+x2=+1

解得x=;

球的半徑R滿足R2=,

三棱錐外接球的表面積為4πR2=4π×=

故選:B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某地上年度電價為元,年用電量為億千瓦時.本年度計劃將電價調至之間,經測算,若電價調至元,則本年度新增用電量(億千瓦時)與元成反比例.又當時,.

1)求之間的函數關系式;

2)若每千瓦時電的成本價為元,則電價調至多少時,本年度電力部門的收益將比上年增加[收益=用電量×(實際電價-成本價)]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,為坐標原點,是拋物線上異于的兩點.

(1)求拋物線的方程;

(2)若直線的斜率之積為,求證:直線過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABCa=7,b=8,cosB= –

A;

AC邊上的高

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知方程(2λx-(1λy232λ)=0與點P(-2,2.

1)證明:對任意的實數λ,該方程都表示直線,且這些直線都經過同一定點,并求出這一定點的坐標;

2)證明:該方程表示的直線與點P的距離d小于.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我們學校是一所有著悠久傳統文化的學校,我們學校全名叫重慶外國語學校(Chongqing Foreign Language School),又名四川外國語大學附屬外國語學校,簡稱重外1981年,被定為四川省首批辦好的重點中學;1997年,被列為重慶市教委首批辦好的直屬重點中學之一;2001年被國家教育部指定為20%高三學生享有保送資格的全國十三所學校之一,今年我校保送取得了非常輝煌的成績,目前為止,包括清華大學,北京大學在內目前共保送122名同學,其中北京大學,南開大學,北京外國語大學保送的人數成公差為正數的等差數列,三個學校保送人數之和為24人,三個學校保送學生人數之積為312,則北京外國語大學保送的人數為(以上數據均來自于學校官網)(

A.10B.11C.13D.14

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知曲線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數方程是是參數),

(Ⅰ)寫出直線的普通方程和曲線的直角坐標方程;

(Ⅱ)設曲線經過伸縮變換得到曲線,曲線任一點為,求點直線的距離的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】四棱錐中,底面為矩形, .側面底面.

(1)證明: ;

(2)設與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案