【題目】已知方程(2λx-(1λy232λ)=0與點(diǎn)P(-22.

1)證明:對任意的實(shí)數(shù)λ,該方程都表示直線,且這些直線都經(jīng)過同一定點(diǎn),并求出這一定點(diǎn)的坐標(biāo);

2)證明:該方程表示的直線與點(diǎn)P的距離d小于.

【答案】(1)證明見解析;直線經(jīng)過的定點(diǎn)為M2,-2)(2)證明見解析

【解析】

1)變形得到2xy6λxy4)=0,得到方程計(jì)算得到答案.

2)易知≤|PM|=,當(dāng)與直線垂直時,直線方程為xy40.,而直線系不能表示此直線,故得證.

1)解顯然2λ與-(1λ)不可能同時為零,故對任意的實(shí)數(shù)λ,該方程都表示直線.

∵方程可變形為2xy6λxy4)=0,∴ 解得

故直線經(jīng)過的定點(diǎn)為M2,-2.

2)證明:易知≤|PM|=,當(dāng)且僅當(dāng)與直線垂直時,等號成立

此時對應(yīng)的直線方程是y2x2,即xy40.

但直線系方程唯獨(dú)不能表示直線xy40,∴<,故所證成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:極坐標(biāo)與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).

1)求曲線的普通方程;

2)經(jīng)過點(diǎn)(平面直角坐標(biāo)系中點(diǎn))作直線交曲線, 兩點(diǎn),若恰好為線段的三等分點(diǎn),求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·衢州調(diào)研)已知四棱錐PABCD的底面ABCD是菱形,∠ADC120°,AD的中點(diǎn)M是頂點(diǎn)P在底面ABCD的射影,NPC的中點(diǎn).

(1)求證:平面MPB⊥平面PBC;

(2)MPMC,求直線BN與平面PMC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題14分)下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對照數(shù)據(jù):


3

4

5

6


2.5

3

4

4.5

1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;并指出x,y 是否線性相關(guān);

2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

3)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?

(參考:用最小二乘法求線性回歸方程系數(shù)公式,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在等比數(shù)列中, ,且 , 成等差數(shù)列.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若數(shù)列滿足,數(shù)列的前項(xiàng)和為,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐的一條棱長為,其余棱長均為2,當(dāng)三棱錐的體積最大時, 它的外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若在定義域上不單調(diào),求的取值范圍;

(2)設(shè)分別是的極大值和極小值,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過去大多數(shù)人采用儲蓄的方式將錢儲蓄起來,以保證自己生活的穩(wěn)定考慮到通貨膨脹的壓力,如果我們把所有的錢都用來儲蓄,這并不是一種很好的方式隨著金融業(yè)的發(fā)展,普通人能夠使用的投資理財(cái)工具也多了起來為了研究某種理財(cái)工具的使用情況,現(xiàn)對年齡段的人員進(jìn)行了調(diào)查研究,將各年齡段人數(shù)分成5組:,,,,并整理得到頻率分布直方圖:

估計(jì)使用這種理財(cái)工具的人員年齡的中位數(shù)、平均數(shù);

采用分層抽樣的方法,從第二組、第三組、第四組中共抽取8人,則三個組中各抽取多少人?

中抽取的8人中,隨機(jī)抽取2人,則第三組至少有1個人被抽到的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,角A,BC的對邊為ab,c,現(xiàn)給出以下四個命題:

當(dāng),,時,滿足條件的三角形共有1個;

若三角形ab57,這個三角形的最大角是;

如果,那么的形狀是直角三角形;

,,則方向的投影為

以上命題中所有正確命題的序號是______

查看答案和解析>>

同步練習(xí)冊答案