【題目】設(shè)拋物線的焦點(diǎn)為,過(guò)且斜率為的直線交拋物線于兩點(diǎn).若線段的垂直平分線與軸交于點(diǎn),則( )

A. B. C. D.

【答案】D

【解析】

由題意可知:拋物線y2=2px(p>0)的焦點(diǎn)為F(,0),直線AB的斜率為,則垂直平分線的斜率為﹣,且與x軸交于點(diǎn)M(11,0),則y=﹣(x﹣11),則直線AB的方程為y=(x﹣),代入拋物線方程,由韋達(dá)定理可知:x1+x2=,根據(jù)中點(diǎn)坐標(biāo)公式求得中點(diǎn)P坐標(biāo),代入AB的垂直平分線方程,即可求得p的值.

由題意可知:拋物線y2=2px(p>0)的焦點(diǎn)為F(,0),

直線AB的斜率為,則垂直平分線的斜率為﹣,且與x軸交于點(diǎn)M(11,0),則y=﹣(x﹣11),

設(shè)直線AB的方程為:y=(x﹣),A(x1,y1),B(x2,y2),AB的中點(diǎn)為P(x0,y0),

,整理得:3x2﹣5px+=0,

由韋達(dá)定理可知:x1+x2=,

由中點(diǎn)坐標(biāo)公式可知:x0=,則y0=,

由P在垂直平分線上,則y0=﹣(x0﹣11),即p=﹣(﹣11),

解得:p=6,

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,其左頂點(diǎn)在圓上.

(1)求橢圓的方程;

(2)若點(diǎn)為橢圓上不同于點(diǎn) 的點(diǎn),直線與圓的另一個(gè)交點(diǎn)為.是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若存在,使得,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了適應(yīng)高考改革,某中學(xué)推行“創(chuàng)新課堂”教學(xué).高一平行甲班采用“傳統(tǒng)教學(xué)”的教學(xué)方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學(xué)方式授課,為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班中各隨機(jī)抽取名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,結(jié)果如下表:(記成績(jī)不低于分者為“成績(jī)優(yōu)秀”)

分?jǐn)?shù)

甲班頻數(shù)

乙班頻數(shù)

(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有以上的把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”?

甲班

乙班

總計(jì)

成績(jī)優(yōu)秀

成績(jī)不優(yōu)秀

總計(jì)

(Ⅱ)現(xiàn)從上述樣本“成績(jī)不優(yōu)秀”的學(xué)生中,抽取人進(jìn)行考核,記“成績(jī)不優(yōu)秀”的乙班人數(shù)為,求的分布列和期望.

參考公式:,其中

臨界值表

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】( 本小題滿分14)

如圖,在三棱錐PABC中,PC底面ABC,ABBCD,E分別是AB,PB的中點(diǎn).

(1)求證:DE平面PAC

(2)求證:ABPB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A經(jīng)過(guò)定點(diǎn),且與直線相切,設(shè)動(dòng)圓圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)過(guò)點(diǎn)的直線,分別與曲線交于,兩點(diǎn),直線的斜率存在,且傾斜角互補(bǔ),證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐EABCD中,底面ABCD是邊長(zhǎng)為2的正方形,且DE,平面ABCD⊥平面ADE,∠ADE30°

(1)求證:AE⊥平面CDE;

(2)求AB與平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義實(shí)數(shù)a,b間的計(jì)算法則如下.

1)計(jì)算

2)對(duì)的任意實(shí)數(shù)x,y,z,判斷的大小,并說(shuō)明理由;

3)寫出函數(shù),的解析式,作出該函數(shù)的圖象,并寫出該函數(shù)單調(diào)遞增區(qū)間和值域(只需要寫出結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中,設(shè)

(Ⅰ)求函數(shù)的定義域,判斷的奇偶性,并說(shuō)明理由;

(Ⅱ)若,求使成立的的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案