【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線(xiàn),.
(1)以過(guò)原點(diǎn)的直線(xiàn)的傾斜角為參數(shù),寫(xiě)出曲線(xiàn)的參數(shù)方程;
(2)直線(xiàn)過(guò)原點(diǎn),且與曲線(xiàn),分別交于,兩點(diǎn)(,不是原點(diǎn))。求的最大值.
【答案】(1) 圓的參數(shù)方程為,(為參數(shù),且)(2)
【解析】
(1)將圓的方程化為標(biāo)準(zhǔn)方程,根據(jù)傾斜角即可化為參數(shù)方程。
(2)將圓的方程化為極坐標(biāo)方程,根據(jù)極坐標(biāo)方程表示出即可求得最大值。
解:(1)如圖,,
即,
是以為圓心,為半徑,且經(jīng)過(guò)原點(diǎn)的圓,
設(shè),
則,
由已知,以過(guò)原點(diǎn)的直線(xiàn)傾斜角為參數(shù),則,而,
所以圓的參數(shù)方程為,(為參數(shù),且)
(2)根據(jù)已知,的極坐標(biāo)方程分別為,
故 ,其中.
故當(dāng)時(shí),等號(hào)成立,
綜上,的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,底面是邊長(zhǎng)為4的正三角形,,底面,點(diǎn)分別為,的中點(diǎn).
(1)求證:平面平面;
(2)在線(xiàn)段上是否存在點(diǎn),使得直線(xiàn)與平面所成的角的正弦值為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線(xiàn)l的方程為y=(-a-1)x +a-2.
(1)求直線(xiàn)過(guò)定點(diǎn)A的坐標(biāo);
(2)若l在兩坐標(biāo)軸上的截距相等,求l的方程;
(3)若l不經(jīng)過(guò)第二象限,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市場(chǎng)研究人員為了了解產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營(yíng)狀況,對(duì)該公司2018年連續(xù)六個(gè)月的利潤(rùn)進(jìn)行了統(tǒng)計(jì),并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線(xiàn)圖,如圖所示
(1)由折線(xiàn)圖可以看出,可用線(xiàn)性回歸模型擬合月利潤(rùn)(單位:百萬(wàn)元)與月份代碼之間的關(guān)系,求關(guān)于的線(xiàn)性回歸方程,并預(yù)測(cè)該公司2019年3月份的利潤(rùn);
(2)甲公司新研制了一款產(chǎn)品,需要采購(gòu)一批新型材料,現(xiàn)有,兩種型號(hào)的新型材料可供選擇,按規(guī)定每種新型材料最多可使用個(gè)月,但新材料的不穩(wěn)定性會(huì)導(dǎo)致材料損壞的年限不相同,現(xiàn)對(duì),兩種型號(hào)的新型材料對(duì)應(yīng)的產(chǎn)品各件進(jìn)行科學(xué)模擬測(cè)試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計(jì)如下表:
使用壽命 材料類(lèi)型 | 個(gè)月 | 個(gè)月 | 個(gè)月 | 個(gè)月 | 總計(jì) |
如果你是甲公司的負(fù)責(zé)人,你會(huì)選擇采購(gòu)哪款新型材料?
參考數(shù)據(jù):,.參考公式:回歸直線(xiàn)方程為,其中 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,是等邊三角形,是等腰直角三角形, ,平面平面,平面.
(1) 求證:;
(2) 若,求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)+(ω≥0,|φ|<π)的圖象與直線(xiàn)y=c(<c<)的三個(gè)相鄰交點(diǎn)的橫坐標(biāo)為2,6,18,若a=f(lg),b=f(lg2),則以下關(guān)系式正確的是( )
A. a+b=0B. a﹣b=0C. a+b=1D. a﹣b=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a、b、c為的三邊長(zhǎng),直線(xiàn)的方程為,圓.
(1)若為直角三角形,c為斜邊長(zhǎng),且直線(xiàn)與圓M相切.求c的值;
(2)已知為坐標(biāo)原點(diǎn),點(diǎn),,,,平行于ON的直線(xiàn)h與圓M相交于R,兩點(diǎn),且,求直線(xiàn)h的方程:
(3)若為正三角形,對(duì)于直線(xiàn)上任意一點(diǎn)P,在圓上總存在一點(diǎn),使得線(xiàn)段的長(zhǎng)度為整數(shù),求c的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(Ⅰ)若,且是函數(shù)的一個(gè)極值,求函數(shù)的最小值;
(Ⅱ)若,求證:,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com