【題目】已知是自然對(duì)數(shù)的底數(shù),函數(shù)的定義域都是.

(1)求函數(shù)在點(diǎn)處的切線(xiàn)方程;

(2)求證:函數(shù)只有一個(gè)零點(diǎn),且;

(3)用表示的最小值,設(shè),若函數(shù)上為增函數(shù),求實(shí)數(shù)的取值范圍.

【答案】(1)(2)見(jiàn)證明(3)

【解析】

(1)利用導(dǎo)數(shù)的幾何意義求函數(shù)在點(diǎn)處的切線(xiàn)方程為.(2)先計(jì)算得,所以存在零點(diǎn),且.再證明上是減函數(shù),即得證函數(shù)只有一個(gè)零點(diǎn),且.(3)由題得,

為增函數(shù),恒成立,即在區(qū)間上恒成立. 設(shè),只需證明,再利導(dǎo)數(shù)求得的最小值,.

(1)∵

∴切線(xiàn)的斜率,.

∴函數(shù)在點(diǎn)處的切線(xiàn)方程為.

(2)證明:∵,

,,,

存在零點(diǎn),且.

,

∴當(dāng)時(shí),

當(dāng)時(shí),由

.

上是減函數(shù).

∴若,,,則.

∴函數(shù)只有一個(gè)零點(diǎn),且.

(3)解:,故

∵函數(shù)只有一個(gè)零點(diǎn),

,即.

.

為增函數(shù),恒成立.

當(dāng)時(shí),即在區(qū)間上恒成立.

設(shè),只需,

單調(diào)減,在單調(diào)增.

的最小值.

當(dāng)時(shí),,由上述得,則恒成立.

綜上述,實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校在平面圖為矩形的操場(chǎng)ABCD內(nèi)進(jìn)行體操表演,其中AB40,BC15,OAB上一點(diǎn),且BO10,線(xiàn)段OCOD、MN為表演隊(duì)列所在位置(MN分別在線(xiàn)段OD、OC上),OCD內(nèi)的點(diǎn)P為領(lǐng)隊(duì)位置,且POC、OD的距離分別為、,記OMd,我們知道當(dāng)OMN面積最小時(shí)觀賞效果最好.

1)當(dāng)d為何值時(shí),P為隊(duì)列MN的中點(diǎn);

2)怎樣安排M的位置才能使觀賞效果最好?求出此時(shí)OMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, 是正方形, 平面 , , , 分別是 , , 的中點(diǎn).

1)求證:平面平面

2)在線(xiàn)段上確定一點(diǎn),使平面,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示單位:cm,四邊形ABCD是直角梯形,求圖中陰影部分繞AB旋轉(zhuǎn)一周所成幾何體的表面積和體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017高考新課標(biāo)Ⅲ,19)如圖,四面體ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBDAB=BD.

(1)證明:平面ACD⊥平面ABC;

(2)過(guò)AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(I)求函數(shù)的對(duì)稱(chēng)軸方程;

(II)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,然后再向左平移個(gè)單位,得到函數(shù)的圖象.若分別是△ABC三個(gè)內(nèi)角A,BC的對(duì)邊,a=2,c=4,且,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以橢圓的離心率為,以其四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積等于

1求橢圓的標(biāo)準(zhǔn)方程;

2過(guò)原點(diǎn)且斜率不為0的直線(xiàn)與橢圓交于兩點(diǎn),是橢圓的右頂點(diǎn),直線(xiàn)分別與軸交于點(diǎn),問(wèn):以為直徑的圓是否恒過(guò)軸上的定點(diǎn)?若恒過(guò)軸上的定點(diǎn),請(qǐng)求出該定點(diǎn)的坐標(biāo);若不恒過(guò)軸上的定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司有4家直營(yíng)店, , ,現(xiàn)需將6箱貨物運(yùn)送至直營(yíng)店進(jìn)行銷(xiāo)售,各直營(yíng)店出售該貨物以往所得利潤(rùn)統(tǒng)計(jì)如下表所示根據(jù)此表,該公司獲得最大總利潤(rùn)的運(yùn)送方式有

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為.

(1)求的解析式;

(2)證明:曲線(xiàn)上任一點(diǎn)處的切線(xiàn)與直線(xiàn)和直線(xiàn)所圍成的三角形的面積為定值,并求此定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案