【題目】如圖所示(單位:cm),四邊形ABCD是直角梯形,求圖中陰影部分繞AB旋轉(zhuǎn)一周所成幾何體的表面積和體積.
【答案】表面積為,體積為.
【解析】
試題分析:由題意知,所圍成的幾何體的表面積等于圓臺(tái)的下底面積+圓臺(tái)的側(cè)面積+半球表面,該幾何體的體積圓臺(tái)的體積減去半個(gè)球的體積,由此可求出結(jié)果.
試題解析:由題意知,知所成幾何體的表面積等于圓臺(tái)下底面積+圓臺(tái)的側(cè)面積+半球面面積.
又S半球面=×4π×22=8π(cm2),
S圓臺(tái)側(cè)=π(2+5)=35π(cm2),
S圓臺(tái)下底=π×52=25π(cm2),
即該幾何全的表面積為8π+35π+25π=68π(cm2).
又V圓臺(tái)=×(22+2×5+52)×4=52π(cm3),V半球=××23=(cm3).
所以該幾何體的體積為V圓臺(tái)-V半球=52π-=(cm3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中有五張卡片,其中紅色卡片三張,標(biāo)號(hào)分別為1,2,3;藍(lán)色卡片兩張,標(biāo)號(hào)分別為1,2.
(1)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號(hào)之和小于4的概率;
(2)現(xiàn)袋中再放入一張標(biāo)號(hào)為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號(hào)之和小于4的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某校高三上學(xué)期期末數(shù)學(xué)考試成績(jī)中,隨機(jī)抽取了名學(xué)生的成績(jī)得到如圖所示的頻率分布直方圖:
(1)根據(jù)頻率分布直方圖,估計(jì)該校高三學(xué)生本次數(shù)學(xué)考試的平均分;
(2)若用分層抽樣的方法從分?jǐn)?shù)在和的學(xué)生中共抽取人,該人中成績(jī)?cè)?/span>的有幾人?
(3)在(2)中抽取的人中,隨機(jī)抽取人,求分?jǐn)?shù)在和各人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)均相等的正四棱錐中, 為底面正方形的重心, 分別為側(cè)棱的中點(diǎn),有下列結(jié)論:
①平面;②平面平面;③;
④直線(xiàn)與直線(xiàn)所成角的大小為.
其中正確結(jié)論的序號(hào)是__________.(寫(xiě)出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義域?yàn)?/span>的函數(shù),若滿(mǎn)足①;②當(dāng),且時(shí),都有;③當(dāng),且時(shí), ,則稱(chēng)為“偏對(duì)函數(shù)”.現(xiàn)給出四個(gè)函數(shù): ; . 則其中是“偏對(duì)稱(chēng)函數(shù)”的函數(shù)個(gè)數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)C的極坐標(biāo)方程為ρ﹣4cosθ+3ρsin2θ=0,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)l過(guò)點(diǎn)M(1,0),傾斜角為.
(Ⅰ)求曲線(xiàn)C的直角坐標(biāo)方程與直線(xiàn)l的參數(shù)方程;
(Ⅱ)若曲線(xiàn)C經(jīng)過(guò)伸縮變換后得到曲線(xiàn)C′,且直線(xiàn)l與曲線(xiàn)C′交于A,B兩點(diǎn),求|MA|+|MB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為。在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,圓的方程為。
(1)寫(xiě)出直線(xiàn)的普通方程和圓的直角坐標(biāo)方程;
(2)若點(diǎn)P坐標(biāo)為,圓與直線(xiàn)交于兩點(diǎn),求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是等差數(shù)列,滿(mǎn)足a1=3,a4=12,數(shù)列{bn}滿(mǎn)足b1=4,b4=20,且{bn-an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢(xún)問(wèn)110名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如表的列聯(lián)表:
算得,K2≈7.8.見(jiàn)附表:參照附表,得到的正確結(jié)論是( 。
男 | 女 | 總計(jì) | |||||
愛(ài)好 | 40 | 20 | 60 | ||||
不愛(ài)好 | 20 | 30 | 50 | ||||
總計(jì) | 60 | 50 | 110 | ||||
P(K2≥k) | 0.050 | 0.010 | 0.001 | ||||
k | 3.841 | 6.635 | 10.828 | ||||
A. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C. 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com