精英家教網 > 高中數學 > 題目詳情

【題目】已知函數,其中.

1)若曲線在點處的切線與直線平行,求的方程;

2)若,函數上為增函數,求證:.

【答案】(12)證明見解析.

【解析】

試題分析:(1)利用導數的幾何意義確定切線的斜率,建立方程,解之即可;(2)由題可得恒成立,即恒成立,

恒成立,構造新函數,研究單調性求最值即可.

試題解析:(1.................2

時,,的方程為:............4

時,,的方程為:...............6

2)由題可得恒成立,...............7

,,即恒成立,

,即恒成立,

上遞增,,

,即恒成立,...................12

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】工資條里顯紅利,個稅新政人民心我國自1980年以來,力度最大的一次個人所得稅(簡稱個稅)改革迎來了全面實施的階段.201911日實施的個稅新政主要內容包括:(1)個稅起征點為5000元;(2)每月應納稅所得額(含稅)收人個稅起征點專項附加扣除;(3)專項附加扣除包括住房、子女教育和贍養(yǎng)老人等.新舊個稅政策下每月應納稅所得額(含稅)計算方法及其對應的稅率表如下:

舊個稅稅率表(個稅起征點3500元)

新個稅稅率表(個稅起征點5000元)

繳稅基數

每月應納稅所得額(含稅)收入個稅起征點

稅率(%

每月應納稅所得額(含稅)收入個稅起征點專項附加扣除

稅率(%

1

不超過1500元的部分

3

不超過3000元的部分

3

2

超過1500元至4500元的部分

10

超過3000元至12000元的部分

10

3

超過4500元至9000元的部分

20

超過12000元至25000元的部分

20

4

超過9000元至35000元的部分

25

超過25000元至35000元的部分

25

5

超過35000元至55000元的部分

30

超過35000元至55000元的部分

30

隨機抽取某市2020名同一收入層級的從業(yè)者的相關資料,經統計分析,預估他們2019年的人均月收入24000元,統計資料還表明,他們均符合住房專項扣除;同時,他們每人至多只有一個符合子女教育扣除的孩子,并且他們中既不符合子女教育扣除又不符合贍養(yǎng)老人扣除、只符合子女教育扣除但不符合贍養(yǎng)老人扣除、只符合贍養(yǎng)老人扣除但不符合子女教育扣除、既符合子女教育扣除又符合贍養(yǎng)老人扣除的人數之比是;此外,他們均不符合其他專項附加扣除,新個稅政策下該市的專項附加扣除標準為:住房1000/月,子女教育每孩1000/月,贍養(yǎng)老人2000/月等.假設該市該收入層級的從業(yè)者都獨自享受專項附加扣除,將預估的該市該收入層級的從業(yè)者的人均月收入視為其個人月收入,根據樣本估計總體的思想,解決如下問題:

1)求在舊政策下該收入層級的從業(yè)者每月應納的個稅;

2)設該市該收入層級的從業(yè)者2019年月繳個稅為X元,求X的分布列和期望;

3)根據新舊個稅方案,估計從20191月開始,經過多少個月,該市該收入層級的從業(yè)者各月少繳納的個稅之和就超過2019年的人均月收入?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

1)若恒成立,求實數的最大值;

2)設函數,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C.

1)求橢圓C的離心率;

2)設分別為橢圓C的左右頂點,點P在橢圓C上,直線AP,BP分別與直線相交于點M,N.當點P運動時,以M,N為直徑的圓是否經過軸上的定點?試證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從①前項和,②,③,這三個條件中任選一個,補充到下面的問題中,并完成解答.

在數列中,,_______,其中

(Ⅰ)求的通項公式;

(Ⅱ)若成等比數列,其中,且,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)求在點處的切線方程;

2)當時,證明:

3)判斷曲線是否存在公切線,若存在,說明有幾條,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若,證明:當時,;

(2)若只有一個零點,求

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

(1)若函數處的切線與直線平行,求實數的值;

(2)試討論函數在區(qū)間上的最大值;

(3)若時,函數恰有兩個零點,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校高三(1)班在一次語文測試結束后,發(fā)現同學們在背誦內容方面失分較為嚴重.為了提升背誦效果,班主任倡議大家在早、晚讀時間站起來大聲誦讀,為了解同學們對站起來大聲誦讀的態(tài)度,對全班50名同學進行調查,將調查結果進行整理后制成下表:

考試分數

頻數

5

10

15

5

10

5

贊成人數

4

6

9

3

6

4

1)欲使測試優(yōu)秀率為30%,則優(yōu)秀分數線應定為多少分?

2)依據第1問的結果及樣本數據研究是否贊成站起來大聲誦讀的態(tài)度與考試成績是否優(yōu)秀的關系,列出2×2列聯表,并判斷是否有90%的把握認為贊成與否的態(tài)度與成績是否優(yōu)秀有關系.

參考公式及數據:,.

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習冊答案