已知數(shù)列{an}中,an=
2n-1(n為正奇數(shù))
2n-1(n為正偶數(shù))
,則前n項和Sn=
 
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件知a2k-1=22k-2=4k-1,a2k=2(2k)-1=4k-1,由此利用分類討論思想能求出結果.
解答: 解:∵數(shù)列{an}中,an=
2n-1(n為正奇數(shù))
2n-1(n為正偶數(shù))

∴a2k-1=22k-2=4k-1,
a2k=2(2k)-1=4k-1,
∴S2k=a1+a3+…+a2k-1+a2+a4+…+a2k
=40+4+…+4k-1+4(1+2+…+k)-k
=
1-4k
1-4
+4×
k(k+1)
2
-k

=
4k-1
3
+2k2+k

S2k-1=a1+a3+…+a2k-1+a2+a4+…+a2k-2
=40+4+…+4k-1+4[1+2+…+(k-1)]-(k-1)
=
1-4k
1-4
+4×
k(k-1)
2
-k+1
=
4k-1
3
+2k2-3k
+1.
Sn=
2n-1
3
+
n
2
(n+1),n為偶數(shù)
2n+1-1
3
+
n+1
2
(n-2)+1,n為奇數(shù)

故答案為:
2n-1
3
+
n
2
(n+1),n為偶數(shù)
2n+1-1
3
+
n+1
2
(n-2)+1,n為奇數(shù)
點評:本題考查數(shù)列的前n項和的求法,解題時要認真審題,注意分類討論思想的合理運用,是一道比較難的題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖所示,設拋物線y2=2px,(0<p<1)與圓(x-5)2+y2=9在x軸上方的交點為A、B,與圓(x-6)2+y2=27在x軸上方的交點為C、D,P為AB中點,Q為CD的中點.
(1)求|PQ|;     
(2)求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,點C、D在線段AB上,且△PCD是等邊三角形.
(Ⅰ)當AC,CD,DB滿足怎樣的關系時,△ACP∽△PDB;
(Ⅱ)當△PDB∽△ACP時,試求∠APB的度數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義集合M與N的運算M※N={x|x∈M或x∈N,且x∉M∩N},則(M※N)※N=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四邊形ABCD中,
AB
=
a
,
BC
=
b
,
CD
=
c
DA
=
d
,若
a
b
=
b
c
=
c
d
=
d
a
且|
a
+
b
|=2,|
b
|=
1
3
|
a
|
,則四邊形ABCD的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<A<
π
2
,且cosA=
3
5
,那么sin2A等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當x,y滿足條件|x-1|+|y-1|≤1時,以x,y為坐標的點P(x,y)圍成的平面區(qū)域的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱臺ABC-A1B1C1中,A1B1⊥A1C,A1B1⊥B1C1,AB=3,A1A=AC=5,二面角A1-AB-C大小為
π
3
,二面角A1-AC-B的大小為θ,則tanθ為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2,1),
b
=(-3,4),則
a
-
b
的坐標為( 。
A、(-5,3)
B、(-1,5)
C、(5,-3)
D、(1,-5)

查看答案和解析>>

同步練習冊答案