若圓上有且僅有一個點到直線的距離為,則半徑的值是        

 

【答案】

【解析】

試題分析:圓心到直線的距離為,由于圓上只有一個點到直線的距離為,故半徑的值為.

考點:直線與圓的位置關系.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知A、D分別為橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左頂點與上頂點,橢圓的離心率e=
3
2
,F(xiàn)1、F2為橢圓的左、右焦點,點P是線段AD上的任一點,且
PF1
PF2
的最大值為1.
(1)求橢圓E的方程.
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且OA⊥OB(O為坐標原點),若存在,求出該圓的方程;若不存在,請說明理由.
(3)設直線l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與橢圓E有且僅有一個公共點B1,當R為何值時,|A1B1|取最大值?并求最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知半徑為5的動圓C的圓心在直線l:x-y+10=0上.

(1)若動圓C過點(-5,0),求圓C的方程;

(2)是否存在正實數(shù)r,使得動圓C中滿足與圓O:x2+y2=r2相外切的圓有且僅有一個,若存在,請求出來;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆江西省高二下學期第二次月考理科數(shù)學試卷(解析版) 題型:解答題

已知A、D分別為橢圓E的左頂點與上頂點,橢圓的離心率,FF2為橢圓的左、右焦點,點P是線段AD上的任一點,且的最大值為1 .

(1)求橢圓E的方程;

(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且OAOBO為坐標原點),若存在,求出該圓的方程;若不存在,請說明理由;

(3)設直線l與圓相切于A1,且l與橢圓E有且僅有一個公共點B1,當R為何值時,|A1B1|取得最大值?并求最大值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年湖南省長沙一中高三(下)第九次月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知A、D分別為橢圓E:=1(a>b>0)的左頂點與上頂點,橢圓的離心率e=,F(xiàn)1、F2為橢圓的左、右焦點,點P是線段AD上的任一點,且的最大值為1.
(1)求橢圓E的方程.
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且OA⊥OB(O為坐標原點),若存在,求出該圓的方程;若不存在,請說明理由.
(3)設直線l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與橢圓E有且僅有一個公共點B1,當R為何值時,|A1B1|取最大值?并求最大值.

查看答案和解析>>

同步練習冊答案