x2 |
a2 |
y2 |
b2 |
| ||
2 |
PF1 |
PF2 |
PF1 |
PF1 |
PF2 |
x2 |
4 |
|
4 |
5 |
|n| | ||
|
|
2 |
PF1 |
PF2 |
PF1 |
PF2 |
c |
a |
| ||
2 |
x2 |
4 |
x2 |
4 |
|
|
k2(4t2-4) |
1+4k2 |
8 k2t2 |
1+4k2 |
t2-4k2 |
1+4k2 |
OA |
OB |
4t2-4 |
1+4k2 |
t2-4k2 |
1+4k2 |
5t2-4k2-4 |
1+4k2 |
|t| | ||
|
t2 |
1+k2 |
| ||
1+k2 |
4 |
5 |
4 |
5 |
2 |
5 |
5 |
x2 |
4 |
2 |
5 |
5 |
2 |
5 |
5 |
2 |
5 |
5 |
2 |
5 |
5 |
4 |
5 |
|n| | ||
|
|
|
|
4n2-4 |
1+4m2 |
16R2-16 |
3R2 |
1 |
4 |
4-R2 |
3R2 |
4 |
R2 |
4 |
R2 |
4 |
R2 |
4 |
R2 |
2 |
2 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
A、±
| ||
B、±
| ||
C、±
| ||
D、±
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:選擇題
已知A、B分別為橢圓+=1(a>b>0)的左、右頂點(diǎn),C(0,b),直線l:x=2a與x軸交于點(diǎn)D,與直線AC交于點(diǎn)P,若∠DBP=,則此橢圓的離心率為( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆江西省高二下學(xué)期第二次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知A、D分別為橢圓E: 的左頂點(diǎn)與上頂點(diǎn),橢圓的離心率,F1、F2為橢圓的左、右焦點(diǎn),點(diǎn)P是線段AD上的任一點(diǎn),且的最大值為1 .
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且OAOB(O為坐標(biāo)原點(diǎn)),若存在,求出該圓的方程;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)直線l與圓相切于A1,且l與橢圓E有且僅有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年湖南省長(zhǎng)沙一中高三(下)第九次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com