已知A、D分別為橢圓E的左頂點(diǎn)與上頂點(diǎn),橢圓的離心率F、F2為橢圓的左、右焦點(diǎn),點(diǎn)P是線段AD上的任一點(diǎn),且的最大值為1 .

(1)求橢圓E的方程;

(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且OAOBO為坐標(biāo)原點(diǎn)),若存在,求出該圓的方程;若不存在,請(qǐng)說明理由;

(3)設(shè)直線l與圓相切于A1,且l與橢圓E有且僅有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.

 

【答案】

(1);(2)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B;(3)1.

【解析】本試題主要是考查了橢圓的 方程的求解,以及直線與橢圓的位置關(guān)系的運(yùn)用并結(jié)合了直線與圓的位置關(guān)系來考查線段長(zhǎng)度的最值問題的運(yùn)用。

(1)設(shè)P (x,y),F1 (–c,0),F2c,0),其中

看作線段AD上的點(diǎn)P (x,y)到原點(diǎn)距離的平方,

PA點(diǎn),x2 + y2最大,∴a2c2 = 1,

.………………4分

(2)由(1)知橢圓方程為,

①設(shè)圓心在原點(diǎn)的圓的一條切線為y = kx + t,

解方程組……………5分

要使切線與橢圓恒有兩個(gè)交點(diǎn)A B,則使

,………………………………6分

要使

所以5t2 – 4k2 – 4 = 0,即5t2 = 4k2 + 4且t2<4k2 + 1,即4k2 + 4<20k2 + 5恒成立.

又因?yàn)橹本y = kx + t為圓心在原點(diǎn)的圓的一條切線,

所以圓的半徑為r =……………7分

②當(dāng)切線的斜率不存在時(shí),切線為滿足.

綜上,存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B.                        ……………………8分

(3)設(shè)直線l的方程為y = mx + n,因?yàn)橹本l與圓Cx2 + y2 = R2 (1<R<2)相切于A1,

由(2)知  ①,    因?yàn)?i>l與橢圓只有一個(gè)公共點(diǎn)B1,由(2)知有唯一解,

即4m2n2 + 1 = 0,   ②

由①②得此時(shí)A,B重合為B1 (x1,y1)點(diǎn),由x1 = x2,所以B1 (x1,y1)點(diǎn)在橢圓上,所以

,在直角三角形OA1B1中,|A1B1|2 = |OB1|2 – |OA1|2 =

5

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918162198513842/SYS201206191818158758401449_DA.files/image025.png">時(shí)取等號(hào),所以

即當(dāng)時(shí)|A1B1|取得最大值,最大值為1.………………………………13分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A、D分別為橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左頂點(diǎn)與上頂點(diǎn),橢圓的離心率e=
3
2
,F(xiàn)1、F2為橢圓的左、右焦點(diǎn),點(diǎn)P是線段AD上的任一點(diǎn),且
PF1
PF2
的最大值為1.
(1)求橢圓E的方程.
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),若存在,求出該圓的方程;若不存在,請(qǐng)說明理由.
(3)設(shè)直線l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與橢圓E有且僅有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取最大值?并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知A,B分別為橢圓
x2
a2
+
y2
b2
=1(a>b>)
的右頂點(diǎn)和上頂點(diǎn),直線 l∥AB,l與x軸、y軸分別交于C,D兩點(diǎn),直線CE,DF為橢圓的切線,則CE與DF的斜率之積kCE?kDF等于( 。
A、±
a2
b2
B、±
a2-b2
a2
C、±
b2
a2
D、±
a2-b2
b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:選擇題

已知A、B分別為橢圓+=1(a>b>0)的左、右頂點(diǎn),C(0,b),直線l:x=2ax軸交于點(diǎn)D,與直線AC交于點(diǎn)P,若∠DBP=,則此橢圓的離心率為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖南省長(zhǎng)沙一中高三(下)第九次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知A、D分別為橢圓E:=1(a>b>0)的左頂點(diǎn)與上頂點(diǎn),橢圓的離心率e=,F(xiàn)1、F2為橢圓的左、右焦點(diǎn),點(diǎn)P是線段AD上的任一點(diǎn),且的最大值為1.
(1)求橢圓E的方程.
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),若存在,求出該圓的方程;若不存在,請(qǐng)說明理由.
(3)設(shè)直線l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與橢圓E有且僅有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取最大值?并求最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案