【題目】在△ABC中,內(nèi)角AB,C的對邊分別為a,bc.已知

(Ⅰ)求的值;

(Ⅱ)若,△ABC的周長為7,求b

【答案】(Ⅰ)3(Ⅱ)b3

【解析】

)由正弦定理轉(zhuǎn)化得到sinBcosA+sinAcosB3sinCcosB+sinBcosC),化簡得到sinC3sinA,即得解;

由余弦定理得到:b3a,結(jié)合周長,可求解b.

,

bcosA3bcosC3ccosBacosB

由正弦定理可得sinBcosA+sinAcosB3sinCcosB+sinBcosC),

可得sinA+B)=3sinB+C),即sinC3sinA

3

3,可得c3a,

,

由余弦定理可得b2a2+c22accosBa2+c2aca2+9a2a29a2

可得b3a,

∵△ABC的周長為7,即a+b+ca+3a+3a7

解得a1,b3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為實數(shù).

1)當(dāng)時,判斷函數(shù)在其定義域上的單調(diào)性;

2)是否存在實數(shù),使得對任意的,恒成立?若不存在,請說明理由;若存在,求出的值并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A4紙是生活中最常用的紙規(guī)格.A系列的紙張規(guī)格特色在于:①A0、A1、A2A5,所有尺寸的紙張長寬比都相同.②在A系列紙中,前一個序號的紙張以兩條長邊中點連線為折線對折裁剪分開后,可以得到兩張后面序號大小的紙,比如1A0紙對裁后可以得到2A1紙,1A1紙對裁可以得到2A2紙,依此類推.這是因為A系列紙張的長寬比為1這一特殊比例,所以具備這種特性.已知A0紙規(guī)格為84.1厘米×118.9厘米.118.9÷84.1≈1.41≈,那么A4紙的長度為( 。

A.厘米B.厘米C.厘米D.厘米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=(m+2)是冪函數(shù),設(shè)a=log54,b=,c=0.5–0.2,則fa),fb),fc)的大小關(guān)系是

A.fa)<fb)<fcB.fb)<fc)<fa

C.fc)<fb)<faD.fc)<fa)<fb

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解學(xué)生的體育鍛煉時間,采用簡單隨機抽樣方法抽取了100名學(xué)生,對其平均每日參加體育鍛煉的時間(單位:分鐘)進行調(diào)查,按平均每日體育鍛煉時間分組統(tǒng)計如下:

分組

男生人數(shù)

2

16

19

18

5

3

女生人數(shù)

3

20

10

2

1

1

若將平均每日參加體育鍛煉的時間不低于120分鐘的學(xué)生稱為鍛煉達人

1)將頻率視為概率,估計該校4000名學(xué)生中鍛煉達人有多少?

2)從這100名學(xué)生的鍛煉達人中按性別分層抽取5人參加某項體育活動.

①求男生和女生各抽取了多少人?

②若從這5人中隨機抽取2人作為組長候選人,求抽取的2人中男女各1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)求函數(shù)的極小值;

2)證明:當(dāng)時,不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《西游記》《三國演義》《水滸傳》和《紅樓夢》是中國古典文學(xué)瑰寶,并稱為中國古典小說四大名著.某中學(xué)為了解本校學(xué)生閱讀四大名著的情況,隨機調(diào)查了100名學(xué)生,其中閱讀過《西游記》的學(xué)生有70位,只閱讀過《紅樓夢》的學(xué)生有20位,則既沒閱讀過《西游記》也沒閱讀過《紅樓夢》的學(xué)生人數(shù)與該校學(xué)生總數(shù)比值的估計值為(

A.0.1B.0.2C.0.3D.0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點分別是,是其左右頂點,點是橢圓上任一點,且的周長為6,若面積的最大值為.

(1)求橢圓的方程;

(2)若過點且斜率不為0的直線交橢圓兩個不同點,證明:直線的交點在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在邊長為的等邊三角形中,點分別是邊上的點,滿足,將沿直線折到的位置. 在翻折過程中,下列結(jié)論成立的是(

A.在邊上存在點,使得在翻折過程中,滿足平面

B.存在,使得在翻折過程中的某個位置,滿足平面平面

C.,當(dāng)二面角為直二面角時,

D.在翻折過程中,四棱錐體積的最大值記為,的最大值為

查看答案和解析>>

同步練習(xí)冊答案