【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,AB=PA=1,AD= ,F(xiàn)是PB中點,E為BC上一點.
(1)求證:AF⊥平面PBC;
(2)當(dāng)BE為何值時,二面角C﹣PE﹣D為45°.
【答案】
(1)證明:以A為原點,AD為x軸,AB為y軸,AP為z軸,建立空間直角坐標(biāo)系,
∵AB=PA=1,AD= ,F(xiàn)是PB中點,
∴A(0,0,0),P(0,0,1),B(0,1,0),C( ,1,0),
=(0,1,-1), =( ,1,-1),F(xiàn)(0, , ),
=(0, , ),
∵ =0, =0,
∴AF⊥PB,AF⊥PC,
∴AF⊥平面PBC.
(2)解:設(shè)BE=a,∴E(a,1,0), =(a- ,1,0), =( ,0,-1),
設(shè)平面PDE的法向量 =(x,y,z),
則 ,
取x=1,得 =(1, -a, ),
平面PCE的法向量為 =(0, , ),
∵二面角C﹣PE﹣D為45°,
∴cos< , >= = ,
解得a= ,
∴當(dāng)BE= 時,二面角C﹣PE﹣D為45°.
AF⊥平面PBC.
【解析】(1)以A為原點,AD為x軸,AB為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能證明AF⊥平面PBC.(2)設(shè)BE=a,E(a,1,0求出平面PDE的法向量和平面PCE的法向量,利用向量法能求出當(dāng)BE= 時,二面角C﹣PE﹣D為45°.
【考點精析】解答此題的關(guān)鍵在于理解直線與平面垂直的判定的相關(guān)知識,掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( )
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣ 存在單調(diào)遞減區(qū)間,且y=f(x)的圖象在x=0處的切線l與曲線y=ex相切,符合情況的切線l( )
A.有3條
B.有2條
C.有1條
D.不存在
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ ax2+x,a∈R.
(1)若f(1)=0,求函數(shù)f(x)的最大值;
(2)令g(x)=f(x)﹣(ax﹣1),求函數(shù)g(x)的單調(diào)區(qū)間;
(3)若a=﹣2,正實數(shù)x1 , x2滿足f(x1)+f(x2)+x1x2=0,證明x1+x2≥ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , a1= ,且對于任意正整數(shù)m,n都有an+m=anam . 若Sn<a對任意n∈N*恒成立,則實數(shù)a的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017廣東佛山二!磕潮kU公司針對企業(yè)職工推出一款意外險產(chǎn)品,每年每人只要交少量保費,發(fā)生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為、、三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計出三類工種的每賠付頻率如下表(并以此估計賠付概率).
(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤都不得超過保費的20%,試分別確定各類工種每張保單保費的上限;
(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購買一份此種保險,并以(Ⅰ)中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017四川資陽4月模擬】共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務(wù)區(qū)等場所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5組,制成如圖所示頻率分直方圖.
(Ⅰ) 求圖中的值;
(Ⅱ) 已知滿意度評分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評分值為[90,100]的人中隨機抽取4人進(jìn)行座談,設(shè)其中的女生人數(shù)為隨機變量X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y﹣4≤0,x≥0,y≥0}表示的平面區(qū)域分別為Ω1 , Ω2 , 若在區(qū)域Ω1內(nèi)任取一點M(x,y),則點M落在區(qū)域Ω2的概率為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com