【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( )
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為 (t為參數(shù)),點(diǎn)A的極坐標(biāo)為( , ),設(shè)直線l與圓C交于點(diǎn)P、Q.
(1)寫出圓C的直角坐標(biāo)方程;
(2)求|AP||AQ|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)y=4x3+ax2+bx+5在x= 與x=﹣1時(shí)有極值.
(1)寫出函數(shù)的解析式;
(2)指出函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐的底面是梯形,且, 平面, 是中點(diǎn), .
(Ⅰ)求證: 平面;
(Ⅱ)若, ,求直線與平面所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}中,首項(xiàng)為a1(a1≠0),公差為d,前n項(xiàng)和為Sn , 且滿足a1S5+15=0,則實(shí)數(shù)d的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且2asinB= b.
(1)求角A的大。
(2)若a=6,b+c=8,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的導(dǎo)函數(shù).
(1)若f(x)≥ag(x)恒成立,求實(shí)數(shù)a的取值范圍;
(2)設(shè)n∈N* , 證明: + +…+ <ln(n+1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓Γ: + =1(a>b>0)的右焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成一個(gè)面積為2的等腰直角三角形,O為坐標(biāo)原點(diǎn):
(1)求橢圓Г的方程:
(2)設(shè)點(diǎn)A在橢圓Г上,點(diǎn)B在直線y=2上,且OA⊥OB,求證: + 為定值:
(3)設(shè)點(diǎn)C在Γ上運(yùn)動(dòng),OC⊥OD,且點(diǎn)O到直線CD距離為常數(shù)d(0<d<2),求動(dòng)點(diǎn)D的軌跡方程:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,AB=PA=1,AD= ,F(xiàn)是PB中點(diǎn),E為BC上一點(diǎn).
(1)求證:AF⊥平面PBC;
(2)當(dāng)BE為何值時(shí),二面角C﹣PE﹣D為45°.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com