若函數(shù)f(x)=
2x,(x>1)
ax+1,(x≤1)
為增函數(shù),則a的取值范圍是
 
考點:函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由條件利用函數(shù)的單調(diào)性的性質(zhì)可得
a>0
2≥a+1
,由此求得a的取值范圍.
解答: 解:由于函數(shù)f(x)=
2x,(x>1)
ax+1,(x≤1)
為增函數(shù),則
a>0
2≥a+1
,
求得0<a≤1,
故答案為:(0,1].
點評:本題主要考查函數(shù)的單調(diào)性的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

矩形ABCD滿足AB=2,AD=1,點A、B分別在射線OM,ON上,∠MON為直角,當(dāng)C到點O的距離最大時,∠BAO的大小為(  )
A、
π
6
B、
π
4
C、
π
3
D、
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD為一個空間四邊形,E、F、G、H分別為BD、AB、AC和CD的中點,求證:四邊形EFGH為平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠BAC=120°,AD為角分線,AC=3,AB=6,AD為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在ABC中,內(nèi)角∠A,∠B,∠C的對邊分別為a,b,c,若a=3,b=4,c=6,則
AB
AC
+
BA
BC
+
CA
CB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<α<
π
4
,則
lim
n→∞
sinnα-cosnα
sinnα+cosnα
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a1+a3+a17=4π,則cos(a2+a12)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+
π
4
)(A>0,ω>0)的周期為π,最大值為3,則A=
 
,ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一數(shù)字游戲規(guī)則如下:第1次生成一個數(shù)a,以后每次生成的結(jié)果均是由上一次生成的每一個數(shù)x生成兩個數(shù),一個是-x,另一個是x+2.設(shè)前n次生成的所有數(shù)的和為Sn,若a=1,則S6=( 。
A、32B、64
C、127D、128

查看答案和解析>>

同步練習(xí)冊答案