在△ABC中,已知A=120°,a=14,b+c=16,則△ABC的面積為
 
考點(diǎn):余弦定理,正弦定理
專題:解三角形
分析:利用余弦定理可得bc,再利用三角形的面積計(jì)算公式即可得出.
解答: 解:由余弦定理可得:a2=b2+c2-2bccosA,
∴142=(b+c)2-2bc-2bccos120°,
∴142=162-2bc+bc,
解得bc=60.
∴△ABC的面積S=
1
2
bcsinA
=
1
2
×60×sin120°
=15
3

故答案為:15
3
點(diǎn)評(píng):本題考查了余弦定理可、三角形的面積計(jì)算公式,考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

二項(xiàng)式(x2+
1
x3
)5
展開式中的常數(shù)項(xiàng)為
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,若點(diǎn)P為正方體AC1的棱A1B1的中點(diǎn),求截面PC1D和AA1B1B所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:等差數(shù)列{an}中,a3=5,a5=9.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=2an,Sn是數(shù)列{bn}的前n項(xiàng)和,試求滿足Sn>2015的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣M=
a1
1b
的一個(gè)屬于特質(zhì)值3的特征向量
α
=
1
1
,正方形區(qū)域OABC在矩陣N應(yīng)對(duì)的變換作用下得到矩形區(qū)域OA′B′C′,如圖所示.
(1)求矩陣M;
(2)求矩陣N及矩陣(MN)-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-ax(a∈R,e為自然對(duì)數(shù)的底數(shù))
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a=1,函數(shù)g(x)=(x-m)f(x)-ex+x2+x在x∈(2,+∞)上為增函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):
|sinx|
sinx
+
cosx
|cosx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是R奇函數(shù),當(dāng)x≥0時(shí),f(x)=3x+m-1,求f(-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的焦點(diǎn)F(a,0)(a<0),則拋物線的標(biāo)準(zhǔn)方程是( 。
A、y2=2ax
B、y2=4ax
C、y2=-2ax
D、y2=-4ax

查看答案和解析>>

同步練習(xí)冊(cè)答案