6.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-2y-5≤0\\ x+y-4≤0\\ 3x+y-10≥0\end{array}\right.$,則z=x2+y2的最小值為( 。
A.$\sqrt{10}$B.10C.8D.5

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,即可得到結(jié)論.

解答 解:實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-2y-5≤0\\ x+y-4≤0\\ 3x+y-10≥0\end{array}\right.$
的可行域?yàn)椋簔=x2+y2的幾何意義是
可行域的點(diǎn)到坐標(biāo)原點(diǎn)距離的平方,
顯然A到原點(diǎn)距離的平方最小,
由$\left\{\begin{array}{l}{x+y-4=0}\\{3x+y-10=0}\end{array}\right.$,可得A(3,1),
則z=x2+y2的最小值為:10.
故選:B.

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知冪函數(shù)y=f(x)的圖象過點(diǎn)(2,$\sqrt{2}$),則下列說法正確的是(  )
A.f(x)是奇函數(shù),則在(0,+∞)上是增函數(shù)
B.f(x)是偶函數(shù),則在(0,+∞)上是減函數(shù)
C.f(x)既不是奇函數(shù)也不是偶函數(shù),且在(0,+∞)上是增函數(shù)
D.f(x)既不是奇函數(shù)也不是偶函數(shù),且在(0,+∞)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.閱讀下邊的程序框圖,運(yùn)行相應(yīng)的程序,則輸出v的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在四棱錐P-ABCD中,平面PAD⊥平面ABCD,△PAD為等邊三角形,$AB=AD=\frac{1}{2}CD$,AB⊥AD,AB∥CD,點(diǎn)M是PC的中點(diǎn).
(I)求證:MB∥平面PAD;
(II)求二面角P-BC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知$tanθ=\frac{1}{2}$,則$tan({\frac{π}{4}-2θ})$=( 。
A.7B.-7C.$\frac{1}{7}$D.$-\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.a(chǎn)>b的一個(gè)充分不必要條件是( 。
A.a=1,b=0B.$\frac{1}{a}$<$\frac{1}$C.a2>b2D.a3>b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,若BC=2,A=120°,則$\overrightarrow{AB}$•$\overrightarrow{CA}$的最大值為( 。
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{4}{3}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.圓x2+y2-6x-2y+3=0的圓心到直線x+ay-1=0的距離為1,則a=( 。
A.$-\frac{4}{3}$B.$-\frac{3}{4}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知${(2{x^3}-\frac{1}{x})^n}$的展開式的常數(shù)項(xiàng)是第7項(xiàng),則正整數(shù)n的值為( 。
A.6B.7C.8D.9

查看答案和解析>>

同步練習(xí)冊答案