A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{4}{3}$ | D. | -$\frac{4}{3}$ |
分析 由$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$,⇒4=AC2+AB2-2AC•ABcosA⇒4=AC2+AB2+AC•AB≥2A•CAB+AC•AB=3AC•AB⇒AC•AB,$\overrightarrow{AB}$•$\overrightarrow{CA}$=AC•ABcos120°即可
解答 解:∵$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$,∴$(\overrightarrow{BC})^{2}=(\overrightarrow{AC}-\overrightarrow{AB})^{2}$⇒4=AC2+AB2-2AC•ABcosA⇒4=AC2+AB2+AC•AB≥2A•CAB+AC•AB=3AC•AB⇒AC•AB≤$\frac{4}{3}$
∴$\overrightarrow{AB}$•$\overrightarrow{CA}$=AC•ABcos120°≤$\frac{2}{3}$,則$\overrightarrow{AB}$•$\overrightarrow{CA}$的最大值為 $\frac{2}{3}$,
故選:A.
點評 考查向量減法的幾何意義,數(shù)量積的運算及其計算公式,涉及了不等式a2+b2≥2ab的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{10}$ | B. | 10 | C. | 8 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若l∥α,m∥α,則l∥m | B. | 若l⊥m,m?α,則l⊥α | C. | 若l∥α,m?α,則l∥m | D. | 若l⊥α,l∥m,則m⊥α |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (60+4$\sqrt{2}$)π | B. | (60+8$\sqrt{2}$)π | C. | (56+8$\sqrt{2}$)π | D. | (56+4$\sqrt{2}$)π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com