15.曲線y=ex+2在P(0,3)處的切線方程是x-y+3=0.

分析 欲求在點(0,3)處的切線的方程,只須求出其斜率即可,故先利用導(dǎo)數(shù)求出在x=0處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問題解決.

解答 解:∵y=ex+2,
∴y′=ex
∴曲線y=ex+2在點(0,3)處的切線的斜率為:k=e0=1,
∴曲線y=ex+2在點(0,3)處的切線的方程為:y=x+3,
故答案為x-y+3=0.

點評 小題主要考查利用導(dǎo)數(shù)研究曲線上某點切線方程、直線方程的應(yīng)用等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)的導(dǎo)數(shù)為f′(x),且(x+1)f(x)+xf′(x)≥0對x∈[0,+∞)恒成立,則下列不等式一定成立的是(  )
A.f(1)<2ef(2)B.ef(1)<f(2)C.f(1)<0D.ef(e)<2f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若數(shù)列{an}的前n項和為Sn,a1=1,Sn+an=2n,求an以及Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若0≤α<β<γ<2π且sinα+sinβ+sinγ=0,cosα+cosβ+cosγ=0,求β-α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.執(zhí)行如圖所示的算法框圖,若輸出k的值為6,則判斷框內(nèi)可填入的條件是S>$\frac{7}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^{-x}},x≥4\\ f(x+1),x<4\end{array}\right.$則f(log23)的值為( 。
A.-24B.-12C.$\frac{1}{12}$D.$\frac{1}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知下列四個命題:
①函數(shù)f(x)=2x滿足:對任意x1,x2∈R且x1≠x2都有$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}$;
②函數(shù)$f(x)={log_2}(x+\sqrt{1+{x^2}})$,g(x)=1+$\frac{2}{{{2^x}-1}}$不都是奇函數(shù);
③若函數(shù)f(x)滿足f(x-1)=-f(x+1),且f(1)=2,則f(7)=-2
④設(shè)x1,x2是關(guān)于x的方程|logax|=k(a>0且a≠1)的兩根,則x1x2=1.
其中正確命題的序號是( 。
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)y=x2-4ax+1在[1,3]上是增函數(shù),則實數(shù)a的取值范圍是(  )
A.(-∞,1]B.$({-∞,\frac{1}{2}}]$C.$[{\frac{1}{2},\frac{3}{2}}]$D.$[{\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.$f(x)=\frac{1}{2}({cosx-sinx})({cosx+sinx})+3a({sinx-cosx})+({4a-1})x$在$[{-\frac{π}{2},0}]$上單調(diào)遞增,則實數(shù)a的取值范圍為[1,+∞).

查看答案和解析>>

同步練習(xí)冊答案