5.$f(x)=\frac{1}{2}({cosx-sinx})({cosx+sinx})+3a({sinx-cosx})+({4a-1})x$在$[{-\frac{π}{2},0}]$上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為[1,+∞).

分析 求導(dǎo)數(shù),利用函數(shù)單調(diào)遞增,導(dǎo)數(shù)大于等于0,即可得出結(jié)論.

解答 解:f′(x)=-sin2x+3a(cosx+sinx)+(4a-1),
設(shè)t=cosx+sinx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[-1,1],y=-t2+3at+4a≥0恒成立,
∴a≥$\frac{{t}^{2}}{3t+4}$=$\frac{1}{4(\frac{1}{t}+\frac{3}{8})^{2}-\frac{9}{16}}$,不等式右邊的最大值為1,
∴a≥1.
故答案為[1,+∞).

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,正確求導(dǎo)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.曲線y=ex+2在P(0,3)處的切線方程是x-y+3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在三棱柱ABC-A1B1C1中,D是AB的中點(diǎn).
(1)求證:BC1∥平面A1CD;
(2)若AC=CD,求證A1D⊥CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)a=cos212°-sin212°,b=$\frac{2tan12°}{1-ta{n}^{2}12°}$,c=$\sqrt{\frac{1-cos48°}{2}}$,則有(  )
A.c<b<aB.a<b<cC.a<c<bD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.集合A={x||x-1|<1},B={x|-2≤x<2},則A∩B=( 。
A.(0,2)B.[0,2)C.[-2,0)D.(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,點(diǎn)P的極坐標(biāo)為(1,π),已知曲線C:ρ=2$\sqrt{2}asin(θ+\frac{π}{4})(a>0)$,直線l過(guò)點(diǎn)P,其參數(shù)方程為:$\left\{\begin{array}{l}x=m+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t為參數(shù)),直線l與曲線C分別交于M,N.
(1)寫(xiě)出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若|PM|+|PN|=5,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知向量$\overrightarrow{a}$=(x,2,2),$\overrightarrow$=(2,y,-2),$\overrightarrow{c}$=(3,1,z),$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$⊥$\overrightarrow{c}$.
(1)求向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$;
(2)求向量($\overrightarrow{a}$+$\overrightarrow{c}$)與($\overrightarrow$+$\overrightarrow{c}$)所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖所示,已知AB是⊙O的直徑,C為圓上任意一點(diǎn),過(guò)C的切線分別與過(guò)A,B兩點(diǎn)的切線交于P,Q.求證:AB2=4AP•BQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知tanα=$\frac{4}{3}$,求sinα及cosα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案