分析 由已知等式表示出cosγ與sinγ,代入sin2γ+cos2γ=1中,整理后利用兩角和與差的余弦函數(shù)公式及特殊角的三角函數(shù)值化簡即可得解β-α=$\frac{2π}{3}$或$\frac{4π}{3}$.①同理可得:γ-β=$\frac{2π}{3}$或$\frac{4π}{3}$②,γ-α=$\frac{2π}{3}$或$\frac{4π}{3}$③.解得β-α的值為$\frac{2π}{3}$.
解答 解:∵cosα+cosβ+cosγ=sinα+sinβ+sinγ=0,
∴cosγ=-cosα-cosβ,sinγ=-sinα-sinβ,
∵sin2γ+cos2γ=1,
∴(cosα+cosβ)2+(sinα+sinβ)2=1,
整理得:2+2(cosαcosβ+sinαsinβ)=1,即cosαcosβ+sinαsinβ=-$\frac{1}{2}$,
∴cos(β-α)=-$\frac{1}{2}$,
∵0≤α<β<2π,
∴0<β-α<2π
∴β-α=$\frac{2π}{3}$或$\frac{4π}{3}$.①
∴同理可得:cos(γ-β)=-$\frac{1}{2}$,解得:γ-β=$\frac{2π}{3}$或$\frac{4π}{3}$②.
cos(γ-α)=-$\frac{1}{2}$;解得:γ-α=$\frac{2π}{3}$或$\frac{4π}{3}$③.
∵0≤α<β<γ<2π,
∴β-α=$\frac{2π}{3}$,γ-β=$\frac{2π}{3}$,γ-α=$\frac{4π}{3}$.
故β-α的值為$\frac{2π}{3}$.
點(diǎn)評(píng) 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,考查了三角函數(shù)的恒等變形,兩角和與差的三角函數(shù),公式的正確應(yīng)用的解題關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x+y=0 | B. | 2x-y=0 | C. | 4x-4y+1=0 | D. | 4x+4y+1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 27:98 | B. | 3:4 | C. | 9:25 | D. | 4:7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c<b<a | B. | a<b<c | C. | a<c<b | D. | b<a<c |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com