【題目】下列命題正確的是( )
A.“”是“”的必要不充分條件
B.對于命題:,使得,則:均有
C.若為假命題,則,均為假命題
D.命題“若,則”的否命題為“若,則”
【答案】B
【解析】
首先對于選項B和D,都是考查命題的否命題的問題,如果兩個命題中一個命題的條件和結論分別是另一個命題的條件和結論的否定,則這兩個命題稱互為否命題. 即可得出B正確,D錯誤.對于選項A因為“”是“”的充分不必要條件.故選項A錯誤.對于選項C,因為若“且”為假命題,則、中有一個為假命題,不一定、均為假命題;故C錯誤.即可根據排除法得到答案.
對A,“”是“”的必要不充分條件.因為“”等價于“,”所以:“”是“”的充分不必要條件,故A錯誤.
對B,對于命題,使得,則均有.因為否命題是對條件結果都否定,所以B正確.
對C,若為假命題,則,均為假命題.因為若“且”為假命題,則、中有一個為假命題,不一定、均為假命題;故C錯誤.
對D,命題“若,則”的否命題為“若則”.因為否命題是對條件結果都否定,故D錯誤.
故選:B.
科目:高中數(shù)學 來源: 題型:
【題目】某學校實行自主招生,參加自主招生的學生從8個試題中隨機挑選出4個進行作答,至少答對3個才能通過初試已知甲、乙兩人參加初試,在這8個試題中甲能答對6個,乙能答對每個試題的概率為,且甲、乙兩人是否答對每個試題互不影響.
(1)試通過概率計算,分析甲、乙兩人誰通過自主招生初試的可能性更大;
(2)若答對一題得5分,答錯或不答得0分,記乙答題的得分為,求的分布列及數(shù)學期望和方差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一個同學家開了一個小賣部,他為了研究氣溫對熱飲飲料銷售的影響.經過統(tǒng)計,得到一個賣出的熱飲杯數(shù)與當天氣溫的散點圖和對比表
攝氏溫度 | —5 | 4 | 7 | 10 | 15 | 23 | 30 | 36 |
熱飲杯數(shù) | 162 | 128 | 115 | 135 | 89 | 71 | 63 | 37 |
(參考公式),
(參考數(shù)據),,,.樣本中心點為.
(1)從散點圖可以發(fā)現(xiàn),各點散布在從左上角到右下角的區(qū)域里.因此,氣溫與當天熱飲銷售杯數(shù)之間成負相關,即氣溫越高,當天賣出去的熱飲杯數(shù)越少.統(tǒng)計中常用相關系數(shù)來衡量兩個變量之間線性關系的強弱.統(tǒng)計學認為,對于變量、,如果,那么負相關很強;如果,那么正相關很強;如果,那么相關性一般;如果,那么相關性較弱.請根據已知數(shù)據,判斷氣溫與當天熱飲銷售杯數(shù)相關性的強弱.
(2)(i)請根據已知數(shù)據求出氣溫與當天熱飲銷售杯數(shù)的線性回歸方程;
(ii)記為不超過的最大整數(shù),如,.對于(1)中求出的線性回歸方程,將視為氣溫與當天熱飲銷售杯數(shù)的函數(shù)關系.已知氣溫與當天熱飲每杯的銷售利潤的關系是(單位:元),請問當氣溫為多少時,當天的熱飲銷售利潤總額最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,已知, ,,D是邊AC上的一點,將△ABC沿BD折疊,得到三棱錐A-BCD,若該三棱錐的頂點A在底面BCD的射影M在線段BC上,設BM=x,則x的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,用定義證明函數(shù)在定義域上的單調性;
(2)若函數(shù)是偶函數(shù),
(i)求的值;
(ii)設,若方程只有一個解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小王投資1萬元2萬元、3萬元獲得的收益分別是4萬元、9萬元、16萬元為了預測投資資金x(萬元)與收益y萬元)之間的關系,小王選擇了甲模型和乙模型.
(1)根據小王選擇的甲、乙兩個模型,求實數(shù)a,b,c,p,q,r的值
(2)若小王投資4萬元,獲得收益是25.2萬元,請問選擇哪個模型較好?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】①某學校高二年級共有526人,為了調查學生每天用于休息的時間,決定抽取10%的學生進行調查;②運動會的工作人員為參加接力賽的6支隊伍安排跑道;③一次數(shù)學月考中,某班有10人的成績在100分以上,32人的成績在90~100分,12人的成績低于90分,現(xiàn)從中抽取9人有解有關情況.針對這三個事件,恰當?shù)某闃臃椒ǚ謩e為( )
A.分層抽樣、分層抽樣、簡單隨機抽樣B.系統(tǒng)抽樣、簡單隨機抽樣、分層抽樣
C.簡單隨機抽樣、簡單隨機抽樣、分層抽樣D.系統(tǒng)抽樣、分層抽樣、簡單隨機抽樣
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“節(jié)能減排,綠色生態(tài)”為當今世界各國所倡導,某公司在科研部門的鼎力支持下,進行技術攻關,采用了新工藝,把二氧化碳轉化為一種可利用的化工產品.已知該公 司每月的處理量(噸)至少為50噸,至多為220噸.月處理成本(元)與月處理量(噸)之間的函數(shù)關系式近似表示為:,且每處理一噸二氧化碳得到可利用的化工產品價值為120元.
(1)該公司每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(2)每月處理量為多少噸時,月獲利最大?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com