【題目】如圖,在棱長為3的正方體中,.
求兩條異面直線與所成角的余弦值;
求直線與平面所成角的正弦值.
【答案】(1)(2)
【解析】
(1)以D為原點,建立空間直角坐標(biāo)系D-xyz,則我們易求出已知中,各點的坐標(biāo),進(jìn)而求出向量,的坐標(biāo).代入向量夾角公式,結(jié)合異面直線夾角公式,即可得到答案.
(2)設(shè)出平面BED1F的一個法向量為,根據(jù)法向量與平面內(nèi)任一向量垂直,數(shù)量積為0,構(gòu)造方程組,求出平面BED1F的法向量為的坐標(biāo),代入線面夾角向量公式,即可求出答案.
解:(1)以D為原點,建立空間直角坐標(biāo)系D-xyz如圖所示:
則A(3,0,0),C1=(0,3,3),D1=(0,0,3),E(3,0,2)
∴=(-3,3,3),=(3,0,-1)
∴cosθ===-
則兩條異面直線AC1與D1E所成角的余弦值為
(2)B(3,3,0),=(0,-3,2),=(3,0,-1)
設(shè)平面BED1F的一個法向量為=(x,y,z)
由得
令x=1,則=(1,2,3)
則直線AC1與平面BED1F所成角的正弦值為
||==
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點G(x,y)滿足
(1)求動點G的軌跡C的方程;
(2)過點Q(1,1)作直線L與曲線交于不同的兩點,且線段中點恰好為Q.求的面積;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線直角坐標(biāo)方程;
(2)設(shè)為曲線上的動點,求點到上點的距離的最小值,并求此時點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)將收集到的六組數(shù)據(jù)制作成散點圖如圖所示,并得到其回歸直線的方程為,計算其相關(guān)系數(shù)為,相關(guān)指數(shù)為.經(jīng)過分析確定點為“離群點”,把它去掉后,再利用剩下的5組數(shù)據(jù)計算得到回歸直線的方程為,相關(guān)系數(shù)為,相關(guān)指數(shù)為.以下結(jié)論中,不正確的是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于點F,FE∥CD,交PD于點E.
(1)證明:CF⊥平面ADF;
(2)求二面角DAFE的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線:,直線:.
(1)求曲線和直線的直角坐標(biāo)方程;
(2)設(shè)點的直角坐標(biāo)為,直線與曲線相交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各項均為正數(shù)的等比數(shù)列滿足,,若函數(shù)的導(dǎo)函數(shù)為,則 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象向右平移()個單位長度后得到函數(shù)的圖象,若在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com