【題目】設滿足以下兩個條件的有窮數(shù)列 期待數(shù)列

;

.

)分別寫出一個單調(diào)遞增的階和期待數(shù)列”.

)若某期待數(shù)列是等差數(shù)列,求該數(shù)列的通項公式.

)記期待數(shù)列的前項和為,試證: .

【答案】(1)三階: , 四階: , , , .(2) ;(3)證明見解析.

【解析】試題分析:(Ⅰ)借助新定義利用等差數(shù)列,寫出一個單調(diào)遞增的3階和4階“期待數(shù)列”;

(Ⅱ)利用某期待數(shù)列是等差數(shù)列,通過公差為0,大于0.小于0,分別求解該數(shù)列的通項公式;

判斷k=n時, ,然后證明kn時,利用數(shù)列求和以及絕對值三角不等式證明即可.

試題解析:

)三階: , 四階: , ,

)設等差數(shù)列 , , 公差為,

,

,

,即

時與①②矛盾,

時,由①②得: ,

,即,

,即,

,

,

時,同理得,

,

,

時,

)當時,顯然成立;

時,根據(jù)條件①得,

,

,

,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(本題分)

如圖, 所在的平面互相垂直,且,

)求證:

)求直線與面所成角的大小的正弦值.

)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點, 是橢圓上的點,且,設動點滿足

)求動點的軌跡的方程

若直線與曲線交于兩點,求三角形面積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的上、下、左、右四個頂點分別為x軸正半軸上的某點滿足.

(1)求橢圓的方程;

(2)設該橢圓的左、右焦點分別為,點在圓上,且在第一象限,過作圓的切線交橢圓于,求證:△的周長是定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1 ,在△ABC中,AB=BC=2, ∠B=90°,D為BC邊上一點,以邊AC為對角線做平行四邊形ADCE,沿AC將△ACE折起,使得平面ACE ⊥平面ABC,如圖2.

(1)在圖 2中,設M為AC的中點,求證:BM丄AE;

(2)在圖2中,當DE最小時,求二面角A -DE-C的平面角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,五面體ABCDE,四邊形ABDE是矩形,△ABC是正三角形,AB1,AE2,F是線段BC上一點,直線BC與平面ABD所成角為30°,CE∥平面ADF.

(1)試確定F的位置;

(2)求三棱錐ACDF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】園林管理處擬在公園某區(qū)域規(guī)劃建設一半徑為米圓心角為(弧度)的扇形景觀水池,其中為扇形的圓心,同時緊貼水池周邊建一圈理想的無寬度步道,要求總預算費用不超過萬元,水池造價為每平方米元,步道造價為每米元.

(1)當分別為多少時,可使廣場面積最大,并求出最大值;

(2)若要求步道長為米,則可設計出水池最大面積是多少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,放置的邊長為1的正方形PABC沿x軸滾動,點B恰好經(jīng)過原點.設頂點P(xy)的軌跡方程是yf(x),則對函數(shù)yf(x)有下列判斷:

①若-2≤x≤2,則函數(shù)yf(x)是偶函數(shù);

②對任意的x∈R,都有f(x2)f(x2);

③函數(shù)yf(x)在區(qū)間[2,3]上單調(diào)遞減;

④函數(shù)yf(x)在區(qū)間[4,6]上是減函數(shù).

其中判斷正確的序號是________(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

平面直角坐標系xOy中,射線lyx(x≥0),曲線C1的參數(shù)方程為 (α為參數(shù)),曲線C2的方程為x2+(y-2)2=4;以原點為極點,x軸的非負半軸為極軸建立極坐標系. 曲線C3的極坐標方程為ρ=8sin θ.

(Ⅰ)寫出射線l的極坐標方程以及曲線C1的普通方程;

(Ⅱ)已知射線lC2交于O,M,與C3交于ON,求|MN|的值.

查看答案和解析>>

同步練習冊答案