【題目】如圖所示,放置的邊長為1的正方形PABC沿x軸滾動(dòng),點(diǎn)B恰好經(jīng)過原點(diǎn).設(shè)頂點(diǎn)P(x,y)的軌跡方程是y=f(x),則對函數(shù)y=f(x)有下列判斷:
①若-2≤x≤2,則函數(shù)y=f(x)是偶函數(shù);
②對任意的x∈R,都有f(x+2)=f(x-2);
③函數(shù)y=f(x)在區(qū)間[2,3]上單調(diào)遞減;
④函數(shù)y=f(x)在區(qū)間[4,6]上是減函數(shù).
其中判斷正確的序號(hào)是________.(寫出所有正確結(jié)論的序號(hào))
【答案】①②④
【解析】當(dāng)-2≤x≤-1時(shí),P的軌跡是以A為圓心,半徑為1的圓,
當(dāng)-1≤x≤1時(shí),P的軌跡是以B為圓心,半徑為的圓,
當(dāng)1≤x≤2時(shí),P的軌跡是以C為圓心,半徑為1的圓,
當(dāng)2≤x≤3時(shí),P的軌跡是以A為圓心,半徑為1的圓,
∴函數(shù)的周期是4,因此最終構(gòu)成的圖象如下:
①根據(jù)圖象的對稱性可知函數(shù)y=f(x)是偶函數(shù),
∴①正確;
②由圖象可知函數(shù)的周期是4,∴②正確;
③由圖象可判斷函數(shù)y=f(x)在區(qū)間[2,3]上單調(diào)遞增,∴③錯(cuò)誤;
④由圖象可判斷函數(shù)y=f(x)在區(qū)間[4,6]上是減函數(shù),∴④正確.
故答案為①②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行了一次“環(huán)保知識(shí)競賽”,全校學(xué)生參加了這次競賽,為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取正整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),請根據(jù)下面尚未完成并有局部污損的頻率分布表(如圖所示),解決下列問題.
組別 | 分組 | 頻數(shù) | 頻率 |
第1組 | [50,60) | 8 | 0.16 |
第2組 | [60,70) | a | ■ |
第3組 | [70,80) | 20 | 0.40 |
第4組 | [80,90) | ■ | 0.08 |
第5組 | [90,100] | 2 | b |
合計(jì) | ■ | ■ |
(1)求出a,b的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到廣場參加環(huán)保知識(shí)的志愿宣傳活動(dòng).
①求所抽取的2名同學(xué)中至少有1名同學(xué)來自第5組的概率;
②求所抽取的2名同學(xué)來自同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)滿足以下兩個(gè)條件的有窮數(shù)列, , , 為階“期待數(shù)列”:
①;
②.
()分別寫出一個(gè)單調(diào)遞增的階和階“期待數(shù)列”.
()若某階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項(xiàng)公式.
()記階“期待數(shù)列”的前項(xiàng)和為,試證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)輸公司接受了向一地區(qū)每天至少運(yùn)送180 t物資的任務(wù),該公司有8輛載重為6 t的A型卡車和4輛載重為10 t的B型卡車,有10名駕駛員,每輛卡車每天往返的次數(shù)為A型卡車4次,B型卡車3次,每輛卡車每天往返的費(fèi)用為A型卡車320元,B型卡車504元,則公司如何調(diào)配車輛,才能使公司所花的費(fèi)用最低,最低費(fèi)用為________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+b圖象上的點(diǎn)P(2,1)關(guān)于直線y=x的對稱點(diǎn)Q在函數(shù)g(x)=lnx+a上.
(Ⅰ)求函數(shù)h(x)=g(x)-f(x)的最大值;
(Ⅱ)對任意x1∈[1,e],x2∈,是否存在實(shí)數(shù)k,使得不等式成立,若存在,請求出實(shí)數(shù)k的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016·山東)設(shè)f(x)=xlnx-ax2+(2a-1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
(2)已知f(x)在x=1處取得極大值,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張紙的長、寬分別為2a,2a,A,B,C,D分別是其四條邊的中點(diǎn),現(xiàn)將其沿圖中虛線折起,使得P1,P2,P3,P4四點(diǎn)重合為一點(diǎn)P,從而得到一個(gè)多面體,關(guān)于該多面體的下列命題,正確的是________(寫出所有正確命題的序號(hào)).
①該多面體是三棱錐;②平面BAD⊥平面BCD;
③平面BAC⊥平面ACD;④該多面體外接球的表面積為5πa2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=ex(ln x-a)(e是自然對數(shù)的底數(shù),
e=2.71 828…).
(1)若y=f(x)在x=1處的切線方程為y=2ex+b,求a,b的值.
(2)若函數(shù)f(x)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在公比為q的等比數(shù)列{an}中,已知a1=16,且a1,a2+2,a3成等差數(shù)列.
(Ⅰ)求q,an;
(Ⅱ)若q<1,求滿足a1-a2+a3-…+(-1)2n-1a2n>10的最小的正整數(shù)n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com