已知橢圓C:的離心率為,
直線:y=x+2與原點(diǎn)為圓心,以橢圓C的短軸長(zhǎng)為直
徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)的直線與橢圓交于,兩點(diǎn).設(shè)直線的斜率,在軸上是否存在點(diǎn),使得是以GH為底邊的等腰三角形. 如果存在,求出實(shí)數(shù)的取值范圍,如果不存在,請(qǐng)說(shuō)明理由.
(Ⅰ).
(Ⅱ)存在滿足題意的點(diǎn)(m,0)且實(shí)數(shù)的取值范圍為:.

試題分析:(Ⅰ)利用離心率公式,得到,利用直線與圓相切,圓心到直線的距離等于半徑,得到,得到,從而得到橢圓C的方程.(Ⅱ)通過假設(shè)的方程為),與橢圓方程聯(lián)立,應(yīng)用韋達(dá)定理確定交點(diǎn)坐標(biāo)關(guān)系,利用“向量法”得到. 將表示成應(yīng)用導(dǎo)數(shù)或均值定理確定的范圍.
試題解析:(Ⅰ), 2分
∵直線:y=x+2與圓x2+y2=b2相切,
,解得,則a2="4." 4分
故所求橢圓C的方程為. 5分
(Ⅱ)在軸上存在點(diǎn),使得是以GH為底邊的等腰三角形.  6分
理由如下:
設(shè)的方程為),

因?yàn)橹本與橢圓C有兩個(gè)交點(diǎn),所以
所以,又因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824021227039424.png" style="vertical-align:middle;" />,所以.
設(shè),,則.     7分
.
=
.
由于等腰三角形中線與底邊互相垂直,則.    8分
所以.
.

因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824021227039424.png" style="vertical-align:middle;" />,所以.所以.

設(shè),當(dāng)時(shí),
所以函數(shù)上單調(diào)遞增,所以
,    10分
所以  11分
(若學(xué)生用基本不等式求解無(wú)證明扣1分)
又因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824021227039424.png" style="vertical-align:middle;" />,所以.  所以,.
故存在滿足題意的點(diǎn)(m,0)且實(shí)數(shù)的取值范圍為:.    12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線的距離為.設(shè)為直線上的點(diǎn),過點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)點(diǎn)為直線上的點(diǎn),求直線的方程;
(Ⅲ) 當(dāng)點(diǎn)在直線上移動(dòng)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)的坐標(biāo)分別是,直線相交于點(diǎn),且它們的斜率之積為
(1)求點(diǎn)軌跡的方程;
(2)若過點(diǎn)的直線與(1)中的軌跡交于不同的兩點(diǎn),試求面積的取值范圍(為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的離心率為,且橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)如圖,設(shè)直線與橢圓交于兩點(diǎn)(其中點(diǎn)在第一象限),且直線與定直線交于點(diǎn),過作直線軸于點(diǎn),試判斷直線與橢圓的公共點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正方形中,為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,分別將線段十等分,分點(diǎn)分別記為,連接,過軸的垂線與交于點(diǎn)。

(1)求證:點(diǎn)都在同一條拋物線上,并求拋物線的方程;
(2)過點(diǎn)作直線與拋物線E交于不同的兩點(diǎn), 若的面積之比為4:1,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的右焦點(diǎn)為,過點(diǎn)的直線交橢圓于兩點(diǎn).若的中點(diǎn)坐標(biāo)為,則的方程為  (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)圓和圓是兩個(gè)定圓,動(dòng)圓P與這兩個(gè)定圓都相切,則圓P的圓心軌跡可能是(   )

              
①              ②           ③              ④            ⑤
A.①③⑤B.②④⑤C.①②④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)拋物線上一點(diǎn)軸的距離是,則點(diǎn)到該拋物線焦點(diǎn)的距離是____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,曲線y=x-6x+1與坐標(biāo)軸的交點(diǎn)都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)試判斷是否存在斜率為1的直線,使其與圓C交于A, B兩點(diǎn),且OA⊥OB,若存在,求出該直線方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案