已知橢圓
的離心率為
,且橢圓
的右焦點
與拋物線
的焦點重合.
(Ⅰ)求橢圓
的標(biāo)準方程;
(Ⅱ)如圖,設(shè)直線
與橢圓
交于
兩點(其中點
在第一象限),且直線
與定直線
交于點
,過
作直線
交
軸于點
,試判斷直線
與橢圓
的公共點個數(shù).
(Ⅰ)
;(Ⅱ)一個.
試題分析:(Ⅰ)利用
、
、
之間的相互關(guān)系與題設(shè)條件求出
、
、
的值,從而確定橢圓
的標(biāo)準方程;(Ⅱ)根據(jù)題設(shè)條件分別點
、
、
的坐標(biāo),進而求出直線
的方程,再聯(lián)立直線
和橢圓
的標(biāo)準方程,利用
法確定直線
與橢圓
的公共點個數(shù).
試題解析:(Ⅰ)設(shè)
,易知
,又
,得
,于是有
.
故橢圓
的標(biāo)準方程為
. 4分
(Ⅱ)聯(lián)立
得
,
的坐標(biāo)為
.故
.
依題意可得點
的坐標(biāo)為
.設(shè)
的坐標(biāo)為
, 故
.
因為
,所以
,解得
,
于是直線
的斜率為
, 8分
從而得直線
的方程為:
,代入
,
得
,
即
,知
,
故直線
與橢圓
有且僅有一個公共點. 13分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓C長軸的兩個頂點為A(-2,0),B(2,0),且其離心率為
.
(Ⅰ)求橢圓C的標(biāo)準方程;
(Ⅱ)若N是直線x=2上不同于點B的任意一點,直線AN與橢圓C交于點Q,設(shè)直線QB與以NB為直徑的圓的一個交點為M(異于點B),求證:直線NM經(jīng)過定點.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓C:
的離心率為
,
直線
:y=x+2與原點為圓心,以橢圓C的短軸長為直
徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點
的直線
與橢圓
交于
,
兩點.設(shè)直線
的斜率
,在
軸上是否存在點
,使得
是以GH為底邊的等腰三角形. 如果存在,求出實數(shù)
的取值范圍,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知在直角坐標(biāo)系
中,曲線
的參數(shù)方程為:
(
為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系
取相同的長度單位,且以原點
為極點,以
軸正半軸為極軸)中,直線
的極坐標(biāo)方程為:
.
(Ⅰ)寫出曲線
和直線
在直角坐標(biāo)系下的方程;
(II)設(shè)點
是曲線
上的一個動點,求它到直線
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知△
的兩個頂點
的坐標(biāo)分別是
,且
所在直線的斜率之積等于
.
(Ⅰ)求頂點
的軌跡
的方程,并判斷軌跡
為何種圓錐曲線;
(Ⅱ)當(dāng)
時,過點
的直線
交曲線
于
兩點,設(shè)點
關(guān)于
軸的對稱
點為
(
不重合) 試問:直線
與
軸的交點是否是定點?若是,求出定點,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(13分)已知橢圓C:
(a>b>0)的兩個焦點分別為F
1(﹣1,0),F(xiàn)
2(1,0),且橢圓C經(jīng)過點
.
(I)求橢圓C的離心率:
(II)設(shè)過點A(0,2)的直線l與橢圓C交于M,N兩點,點Q是線段MN上的點,且
,求點Q的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知直線與平面
平行,P是直線
上的一定點,平面
內(nèi)的動點B滿足:PB與直線
成
。那么B點軌跡是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知直線
交橢圓
于
兩點,橢圓與
軸的正半軸交于
點,若
的重心恰好落在橢圓的右焦點上,則直線
的方程是( )
查看答案和解析>>