已知橢圓的右焦點為,過點的直線交橢圓于兩點.若的中點坐標(biāo)為,則的方程為  (  )
A.B.C.D.
D

試題分析:由題意知,,利用點差法,設(shè)過點的直線(顯然,斜率存在)為,交點聯(lián)立橢圓方程得:,則,又的中點坐標(biāo)為,即,,故,又,所以,,聯(lián)立,所以橢圓方程為,選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線,為坐標(biāo)原點,動直線
拋物線交于不同兩點
(1)求證:·為常數(shù);
(2)求滿足的點的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線與雙曲線有公共焦點,點是曲線在第一象限的交點,且
(Ⅰ)求雙曲線的方程;
(Ⅱ)以雙曲線的另一焦點為圓心的圓與直線相切,圓.過點作互相垂直且分別與圓、圓相交的直線,設(shè)被圓截得的弦長為,被圓截得的弦長為,問:是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,焦距為,且經(jīng)過點,直線交橢圓于不同的兩點A,B.
(1)求的取值范圍;,
(2)若直線不經(jīng)過點,求證:直線的斜率互為相反數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C長軸的兩個頂點為A(-2,0),B(2,0),且其離心率為.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若N是直線x=2上不同于點B的任意一點,直線AN與橢圓C交于點Q,設(shè)直線QB與以NB為直徑的圓的一個交點為M(異于點B),求證:直線NM經(jīng)過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的離心率為,
直線:y=x+2與原點為圓心,以橢圓C的短軸長為直
徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點的直線與橢圓交于,兩點.設(shè)直線的斜率,在軸上是否存在點,使得是以GH為底邊的等腰三角形. 如果存在,求出實數(shù)的取值范圍,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上的點到直線2x-y=7距離最近的點的坐標(biāo)為(   )
A.(-,B.(,-C.(-,D.(,-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是雙曲線與圓的一個交點,且,其中分別為雙曲線C1的左右焦點,則雙曲線的離心率為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線與平面平行,P是直線上的一定點,平面內(nèi)的動點B滿足:PB與直線 。那么B點軌跡是 (    )                          
A.橢圓B.雙曲線C.拋物線D.兩直線

查看答案和解析>>

同步練習(xí)冊答案