19.若不等式2x2+(1-a)y2≥(3+a)xy(x>0,y>0)恒成立.則實(shí)數(shù)a的最大值為4$\sqrt{3}$-7.

分析 化簡不等式可得a≤$\frac{2{x}^{2}-3xy+{y}^{2}}{xy+{y}^{2}}$,令$\frac{2{x}^{2}-3xy+{y}^{2}}{xy+{y}^{2}}$=$\frac{2(\frac{x}{y})^{2}-3\frac{x}{y}+1}{\frac{x}{y}+1}$,再令b=$\frac{x}{y}$>0,則$\frac{2(\frac{x}{y})^{2}-3\frac{x}{y}+1}{\frac{x}{y}+1}$=$\frac{2^{2}-3b+1}{b+1}$,令f(b)=$\frac{2^{2}-3b+1}{b+1}$=2(b+1)+$\frac{6}{b+1}$-7,從而利用基本不等式求最小值,從而解得.

解答 解:∵2x2+(1-a)y2≥(3+a)xy,
∴2x2+y2-3xy≥a(y2+xy),
又∵x>0,y>0,
∴a≤$\frac{2{x}^{2}-3xy+{y}^{2}}{xy+{y}^{2}}$,
令$\frac{2{x}^{2}-3xy+{y}^{2}}{xy+{y}^{2}}$=$\frac{2(\frac{x}{y})^{2}-3\frac{x}{y}+1}{\frac{x}{y}+1}$,
令b=$\frac{x}{y}$>0,則$\frac{2(\frac{x}{y})^{2}-3\frac{x}{y}+1}{\frac{x}{y}+1}$=$\frac{2^{2}-3b+1}{b+1}$,
令f(b)=$\frac{2^{2}-3b+1}{b+1}$=2(b+1)+$\frac{6}{b+1}$-7,
∵2(b+1)+$\frac{6}{b+1}$≥4$\sqrt{3}$,
(當(dāng)且僅當(dāng)2(b+1)=$\frac{6}{b+1}$,即b=$\sqrt{3}$-1時,等號成立),
∴2(b+1)+$\frac{6}{b+1}$-7≥4$\sqrt{3}$-7,
∵a≤$\frac{2{x}^{2}-3xy+{y}^{2}}{xy+{y}^{2}}$恒成立,
∴a≤4$\sqrt{3}$-7,
故答案為:4$\sqrt{3}$-7.

點(diǎn)評 本題考查了不等式的化簡與恒成立問題的化簡與應(yīng)用,同時考查了函數(shù)與不等式的關(guān)系應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知a∈R,b∈R,則“a>b”是“$\frac{1}{a}<\frac{1}$”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)球的半徑為R.則以它為外接球的正方體的邊長為$\frac{2\sqrt{3}}{3}$R,以它為內(nèi)切球的正方體的邊長為2R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列結(jié)論不正確的是( 。
A.$\left.\begin{array}{l}{A∈α}\\{a?α}\end{array}\right\}$⇒A∈αB.$\left.\begin{array}{l}{A∈α,A∈β}\\{α∩β=α}\end{array}\right\}$⇒A∈α
C.$\left.\begin{array}{l}{A∈α}\\{A∈β}\end{array}\right\}$⇒α∩β=AD.$\left.\begin{array}{l}{A∈α}\\{B∈α}\end{array}\right\}$⇒AB?α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示.已知直角梯形ABCD,BC∥AD,∠ABC=90°AB=5cm,BC=16cm,AD=4cm,求以AB所在直線為軸旋轉(zhuǎn)一周所得幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.一個幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為18+9πm3,表面積為54+18πm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求使下列函數(shù)取得最大值的自變量x的集合.并寫出最大值是什么;同時指出函數(shù)圖象的對稱軸和對稱中心.
 (1)y=cos$\frac{x}{3}$;
(2)y=2-sin2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若實(shí)數(shù)a,b滿足ab-4a-b+1=0(a>1),則(a+1)(b+2)的最小值為( 。
A.24B.25C.27D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.直線ax+by+c=0(a、b∈R)與圓x2+y2=1交于不同的兩點(diǎn)A、B,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{1}{2}$,其中O為坐標(biāo)原點(diǎn),則|AB|=$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案