【題目】已知函數(shù),.
(Ⅰ)若在內(nèi)單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn)分別為,,證明:.
【答案】(Ⅰ)(Ⅱ)見證明
【解析】
(I)先求得函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)在上的單調(diào)性列不等式,分離常數(shù)后利用構(gòu)造函數(shù)法求得的取值范圍.(II)將極值點(diǎn)代入導(dǎo)函數(shù)列方程組,將所要證明的不等式轉(zhuǎn)化為證明,利用構(gòu)造函數(shù)法證得上述不等式成立.
(I).
∴在內(nèi)單調(diào)遞減,
∴在內(nèi)恒成立,
即在內(nèi)恒成立.
令,則,
∴當(dāng)時(shí),,即在內(nèi)為增函數(shù);
當(dāng)時(shí),,即在內(nèi)為減函數(shù).
∴的最大值為,
∴
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn)分別為,,
則在內(nèi)有兩根,,
由(I),知.
由,兩式相減,得.
不妨設(shè),
∴要證明,只需證明.
即證明,亦即證明.
令函數(shù).
∴,即函數(shù)在內(nèi)單調(diào)遞減.
∴時(shí),有,∴.
即不等式成立.
綜上,得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;
(2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時(shí)間超過和不超過的工人數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
第一種生產(chǎn)方式 | ||
第二種生產(chǎn)方式 |
(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為,過的直線與橢圓交于兩點(diǎn),已知點(diǎn)的坐標(biāo)為.
(Ⅰ)當(dāng)與軸垂直時(shí),求點(diǎn)A、B的坐標(biāo)及的值
(Ⅱ)設(shè)為坐標(biāo)原點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出.具體操作是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過程逐次得到各個(gè)圖形,如圖.
現(xiàn)在上述圖(3)中隨機(jī)選取一個(gè)點(diǎn),則此點(diǎn)取自陰影部分的概率為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
某學(xué)校用簡(jiǎn)單隨機(jī)抽樣方法抽取了100名同學(xué),對(duì)其日均課外閱讀時(shí)間(單位:分鐘)進(jìn)行調(diào)查,結(jié)果如下:
t | ||||||
男同學(xué)人數(shù) | 7 | 11 | 15 | 12 | 2 | 1 |
女同學(xué)人數(shù) | 8 | 9 | 17 | 13 | 3 | 2 |
若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書迷”.
(1)將頻率視為概率,估計(jì)該校4000名學(xué)生中“讀書迷”有多少人?
(2)從已抽取的8名“讀書迷”中隨機(jī)抽取4位同學(xué)參加讀書日宣傳活動(dòng).
(i)求抽取的4位同學(xué)中既有男同學(xué)又有女同學(xué)的概率;
(ii)記抽取的“讀書迷”中男生人數(shù)為,求的分布列和數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班50位學(xué)生周考數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:、、、、、.
(1)求圖中的矩形高的值,并估計(jì)這50人周考數(shù)學(xué)的平均成績(jī);
(2)根據(jù)直方圖求出這50人成績(jī)的眾數(shù)和中位數(shù)(精確到0.1);
(3)從成績(jī)不低于80分的學(xué)生中隨機(jī)選取2人,該2人中成績(jī)不低于90分的人數(shù)記為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,,,為的中點(diǎn),點(diǎn)在平面內(nèi)的射影在線段上.
(1)求證:;
(2)若是正三角形,求三棱柱的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩名老師和五名學(xué)生站一排拍照.
(1)五名學(xué)生必須排在一起共有多少種排法?
(2)兩名老師不能相鄰共有多少種排法?
(3)兩名老師不能排在兩邊共有多少種排法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),焦距長(zhǎng),過點(diǎn)的直線交橢圓于,兩點(diǎn).
(1)求橢圓的方程;
(2)在軸上是否存在一點(diǎn),使得為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com