【題目】已知直線:與焦點為的拋物線:相切.
(Ⅰ)求拋物線的方程;
(Ⅱ)過點的直線與拋物線交于,兩點,求,兩點到直線的距離之和的最小值.
【答案】(I);(II).
【解析】
(Ⅰ)由消去得,,根據(jù)判別式等于零解得,從而可得結(jié)果;(Ⅱ)可設(shè)直線的方程為,由消去得,,利用韋達定理求得線段的中點的坐標(biāo),設(shè)點到直線的距離為,點到直線的距離為,點到直線的距離為,由梯形中位線定理可得,由點到直線的距離公式,利用配方法可得結(jié)果.
(Ⅰ)∵直線:與拋物線相切.
由消去得,,從而,解得.
∴拋物線的方程為.
(Ⅱ)由于直線的斜率不為0,
所以可設(shè)直線的方程為,,.
由消去得,,
∴,從而,
∴線段的中點的坐標(biāo)為.
設(shè)點到直線的距離為,點到直線的距離為,點到直線的距離為,
則 ,
∴當(dāng)時,、兩點到直線的距離之和最小,最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形為正方形,,,.
(1)證明:平面平面.
(2)若平面,二面角為,三棱錐的外接球的球心為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為、,圓經(jīng)過橢圓的兩個焦點和兩個頂點,點在橢圓上,且,.
(Ⅰ)求橢圓的方程和點的坐標(biāo);
(Ⅱ)過點的直線與圓相交于、兩點,過點與垂直的直線與橢圓相交于另一點,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點,,,是橢圓上任意三點,,關(guān)于原點對稱且滿足.
(1)求橢圓的方程.
(2)若斜率為的直線與圓:相切,與橢圓相交于不同的兩點、,求時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線, .
(1)求證:對,直線與圓總有兩個不同的交點;
(2)求弦的中點的軌跡方程,并說明其軌跡是什么曲線;
(3)是否存在實數(shù),使得原上有四點到直線的距離為?若存在,求出的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于集合,定義函數(shù)對于兩個集合,定義集合. 已知, .
(Ⅰ)寫出和的值,并用列舉法寫出集合;
(Ⅱ)用表示有限集合所含元素的個數(shù),求的最小值;
(Ⅲ)有多少個集合對,滿足,且?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com